摘要:
A solid state, electronic, optical transition device includes a multiple-layer structure of semiconductor material which supports substantially ballistic electron/hole transport at energies above/below the conduction/valance band edge. The multiple layer structure of semiconductor material includes a Fabry-Perot filter element for admitting electrons/holes at a first quasibound energy level above/below the conduction/valance band edge, and for depleting electrons/holes at a second quasibound energy level which is lower/higher than the first energy level. Such an arrangement allows common semiconductor material to be used to produce emitters and detectors and other devices which can operate at any of selected frequencies over a wide range of frequencies.
摘要:
An article of manufacture comprising an optical ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
摘要:
An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
摘要:
A circuit including: an optical detector for detecting an optical pulse and generating therefrom a current pulse on an output; a pulse detector circuit having an input electrically connected to the optical detector and having an output for outputting a detection pulse in response to detecting the current pulse on its input, said pulse detector circuit including: a resettable amplifier including an input for receiving the current pulse from the optical detector, a reset terminal for resetting the amplifier after the amplifier detects the current pulse on its input, and an output for outputting a signal from which the detection pulse is derived; and a reset delay chain feeding back to the reset terminal of the resettable amplifier a feedback signal derived from the output signal of the resettable amplifier.
摘要:
An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
摘要:
An optical circuit including a semiconductor substrate; an optical waveguide formed in or on the substrate; and an optical detector formed in or on the semiconductor substrate, wherein the optical detector is aligned with the optical waveguide so as to receive an optical signal from the optical waveguide during operation, and wherein the optical detector has: a first electrode; a second electrode; and an intermediate layer between the first and second electrodes, the intermediate layer being made of a semiconductor material characterized by a conduction band, a valence band, and deep level energy states introduced between the conduction and valence bands.
摘要:
A method of fabricating a detector that involves: forming a trench in a substrate, the substrate having an upper surface; forming a first doped semiconductor layer on the substrate and in the trench; forming a second semiconductor layer on the first doped semiconductor layer and extending into the trench, the second semiconductor layer having a conductivity that is less than the conductivity of the first doped semiconductor layer; forming a third doped semiconductor layer on the second semiconductor layer and extending into the trench; removing portions of the first, second and third layers that are above a plane defined by the surface of the substrate to produce an upper, substantially planar surface and expose an upper end of the first doped semiconductor layer in the trench; forming a first electrical contact to the first semiconductor doped layer; and forming a second electrical contact to the third semiconductor doped layer.
摘要:
A method of fabricating a waveguide mirror that involves etching a trench in a silicon substrate; depositing a film (e.g. silicon dioxide) over the surface of the silicon substrate and into the trench; ion etching the film to remove at least some of the deposited silicon dioxide and to leave a facet of film in inside corners of the trench; depositing a layer of SiGe over the substrate to fill up the trench; and planarizing the deposited SiGe to remove the SiGe from above the level of the trench.
摘要:
Methods are disclosed of fabricating an optical assembly. An active optical element is disposed near or on a first surface of a slab of optical material. A passive optical element is formed on a second surface of the slab, with the second surface being substantially parallel to the first surface. An optical axis of the passive optical element is aligned with an optical path between the passive optical element and an active region of the active optical element using a lithographic alignment process.
摘要:
A method of fabricating a detector that involves: forming a trench in a substrate, the substrate having an upper surface; forming a first doped semiconductor layer on the substrate and in the trench; forming a second semiconductor layer on the first doped semiconductor layer and extending into the trench, the second semiconductor layer having a conductivity that is less than the conductivity of the first doped semiconductor layer; forming a third doped semiconductor layer on the second semiconductor layer and extending into the trench; removing portions of the first, second and third layers that are above a plane defined by the surface of the substrate to produce an upper, substantially planar surface and expose an upper end of the first doped semiconductor layer in the trench; forming a first electrical contact to the first semiconductor doped layer; and forming a second electrical contact to the third semiconductor doped layer.