摘要:
A delay-locked loop (DLL) capable of directly receiving external clock signals is provided. The DLL comprises a level selector, a control signal generator, and an internal clock signal generator. The level selector receives an external clock signal, and directly outputs the external clock signal, or changes a level of the external clock signal and outputs a changed external clock signal, in response to a control signal. The control signal generator generates the control signal. The internal clock signal generator receives an output signal of the level selector and the external clock signal, and generates an internal clock signal synchronized to a phase of an output signal of the level selector.
摘要:
Integrated circuit die stacks having a first die mounted upon a substrate, the first die manufactured to be initially identical to a second die with a plurality of through silicon vias (‘TSVs’), the first die personalized by blowing fuses on the first die, converting the TSVs previously connected through the blown fuses into pass-through vias (‘PTVs’), each PTV implementing a conductive pathway through the first die with no connection to any circuitry on the first die; and the second die, manufactured to be initially identical to the first die and later personalized by blowing fuses on the second die, the second die mounted upon the first die so that the PTVs in the first die connect signal lines from the substrate through the first die to TSVs in the second die.
摘要:
A semiconductor memory device and a memory system including the same are provided. The semiconductor memory device may include a first memory cell array block generating first data, a second memory cell array block generating second data, and first and second error detection code generators. The first error detection code generator may generate a first error detection code and may combine a portion of bits of the first error detection code with a portion of bits of a second error detection code to generate a first final error detection signal. The second error detection code generator may generate the second error detection code and may combine the remaining bits other than the portion of bits of the second error detection code with the remaining bits other than the portion of bits of the first error detection code to generate a second final error detection signal.
摘要:
Delay locked loop circuits are provided that include a delay locked loop that generates a delay locked loop output signal and a jitter suppressor. The jitter suppressor may comprise a delay circuit that receives the delay locked loop output signal and generates one or more delayed versions of the delay locked loop output signal and a phase interpolator that receives the delay locked loop output signal and the one or more delayed versions of the delay locked loop output signal. In certain embodiments of the present invention, the delay circuit may comprise a plurality of serially connected delay cells. Each of these delay cells may delay signals input thereto for at time equal to one clock period of an external clock signal that is input to the delay locked loop.
摘要:
Delay-locked loop integrated circuits include a duty cycle correction circuit. This duty cycle correction circuit generates at least one output clock signal having a substantially uniform duty cycle in response to at least one input clock signal having a non-uniform duty cycle. The duty cycle correction circuit is also responsive to a standby control signal that synchronizes timing of power-saving duty cycle update operations within the duty cycle correction circuit. These update operations reset the set point of the correction circuit.
摘要:
A spread spectrum clock generator includes a non-volatile memory to store control codes corresponding to a predetermined delay. A delay circuit receives a control code having a predetermined number of bits that determine a delay to apply to a fixed clock signal a period of time. The delay mitigates the electromagnetic interference caused by a periodic clock signal.
摘要:
The ability to repair defective cells in a memory array, by replacing those cells with redundant cells, is improved using a redundant memory line control circuit that employs two types of redundancy programming. Most, or all, redundant memory lines can be programmed while the memory array is in a wafer state by, e.g., cutting laser fuses. But at least one memory line can be programmed subsequent to device packaging (“post repair”) using, e.g., commands that cut electric fuses. Preferably, the redundant memory line(s) that are reserved for post repair are selectable among the same redundant memory lines that can be programmed using laser fuses. This allows all redundant memory lines to be available for laser repair, if needed, but also allows a redundant memory line to be selected for post repair after it has been determined that that redundant memory line is defect-free. This increases the likelihood that a device will be repairable, and yet does not unnecessarily waste redundant memory lines by pre-dedicating them to laser or post repair.
摘要:
A refresh of a DRAM having at least a fast and a slow refresh rate includes encoding a pointer on a row or rows with refresh information, reading the refresh information, and incrementing a fast refresh address counter with the refresh information. The refresh may be performed by encoding one or more cells on a row that may require a fast refresh, one or more cells on a group of rows that may require a fast refresh, or one or more cells on a row that may not require a fast refresh.
摘要:
A refresh of a DRAM having at least a fast and a slow refresh rate includes encoding a pointer on a row or rows with refresh information, reading the refresh information, and incrementing a fast refresh address counter with the refresh information. The refresh may be performed by encoding one or more cells on a row that may require a fast refresh, one or more cells on a group of rows that may require a fast refresh, or one or more cells on a row that may not require a fast refresh.
摘要:
A method for determining an optimized refresh rate involves testing a refresh rate on rows of cells, determining an error rate of the rows, evaluating the error rate of the rows; and repeating these steps for a decreased refresh rate until the error rate is greater than a constraint, at which point a slow refresh rate is set.