摘要:
The present disclosure provides a deflection device (100, 200, 300, 400) for use in a scanner. The deflection device (100, 200, 300, 400) includes a substrate (102, 202), a mirror (106, 206, 304, 404) and actuator means (110). The mirror (106, 206, 304, 404) arranged in a recess (104, 204, 306, 406) in the substrate (102, 202) by connector means (108) in such a way that it can rotate about at least two axes in an oscillatory manner. The actuator means (110) causes the mirror (106, 206, 304, 404) to oscillate. The actuator means (110) are arranged in one or more trenches (112A-D) in the substrate (102, 202) surrounding the recess (104, 204, 306, 406), in such a way that a change of shape of the actuator means (110) will cause a movement in the substrate (102, 202), thereby inducing oscillatory movement of the mirror (106, 206, 304, 404).
摘要:
A micromechanical resonator wafer assembly includes an actuator wafer supporting an outer actuator layer. The outer actuator layer includes an oscillating part configured to be driven by an electrical drive signal. The micromechanical resonator wafer assembly further includes a device wafer mounted on top of the actuator wafer. The device wafer includes a plurality of inner actuators. Each of the inner actuators include an oscillation body configured to oscillate about one or more axes. The device wafer is physically connected to the actuator wafer such that each of the inner actuators forms with the outer actuator layer a coupled oscillation system for excitation of the oscillation body of the respective inner actuator. The micromechanical resonator wafer assembly provides external actuation of the oscillation body of each of the inner actuators by use of the outer actuator layer and hence, provides improved scan angles with fast start-up time.
摘要:
A converter assembly for converting a primary light into a secondary light includes at least one element which has a light-converting structure with open pores and which is laterally held by a frame. The surfaces of both the light-converting structure as well as of the inner face of the frame are covered with a transparent layer such that each of the afore-mentioned elements forms a region in which a property of the incident light and preferably of the wavelength thereof is changed. In specific embodiments, the converter assembly can be part of display assemblies or of miniaturized components for example. There is also described a method for producing the converter assembly.
摘要:
A micromirror system that includes a chip frame, at least one spring element, and at least one mirror plate oscillatorily suspended in the chip frame via the at least one spring element. The chip frame and the at least one spring element include at least one microchannel which is provided with an inlet opening and an outlet opening for leading through a flowing coolant.
摘要:
The present invention relates to a radiation imaging sensor with at least one detection element, which is implemented on a substrate as a micromechanical resonator and which absorbs the radiation to be detected. The resonator is set into a resonant oscillation with an excitation device and a shift in the resonance frequency of the detection element under exposure to radiation is detected with a detection device. The radiation sensor is characterized by the fact that it comprises a scanning device with a single-axis or multi-axis tiltable scanning element. The facility to tilt the device means that the detection element can be used to detect radiation from different directions. The imaging sensor can be realized in a compact manner and be economically produced.
摘要:
The invention relates to an MEMS structure with a stack made of different layers and a spring-and-mass system varying in its thickness which is formed of the stack, and wherein, starting from a back side of the stack and the substrate, at laterally different positions, the substrate while leaving the first semiconductor layer, or the substrate, the first etch-stop layer and the first semiconductor layer are removed, and to a method for manufacturing such a structure.
摘要:
A micromirror system that includes a chip frame, at least one spring element, and at least one mirror plate oscillatorily suspended in the chip frame via the at least one spring element. The chip frame and the at least one spring element include at least one microchannel which is provided with an inlet opening and an outlet opening for leading through a flowing coolant.
摘要:
The method according to the invention is used for producing optical components, in particular covers for encapsulating micro-systems, wherein at least one reinforcing element, which is produced before being arranged, is arranged on a first substrate, as a result of which a stack is produced. This stack is heated after being connected to a second substrate, as a result of which the first substrate is deformed such that at least one region, covered by the reinforcing element, of the first substrate is moved and/or is inclined or the first substrate is brought into contact with the reinforcing element. In an alternative method according to the invention, the reinforcing element is arranged on the second substrate, wherein this stack is then connected to the first substrate. The first substrate is subsequently heated and deformed such that a region of the first substrate is brought into contact with the reinforcing element.
摘要:
The invention relates to an antenna device having at least one antenna element. The antenna element is implemented so as to emit electromagnetic radiation in a beam direction advantageously at frequencies in the GHz range and/or receive same from a beam direction. In addition, the antenna element is arranged on a carrier element which is arranged relative to a holding element. In addition, the carrier element is movable relative to the holding element.
摘要:
The present invention relates to a radiation imaging sensor with at least one detection element, which is implemented on a substrate as a micromechanical resonator and which absorbs the radiation to be detected. The resonator is set into a resonant oscillation with an excitation device and a shift in the resonance frequency of the detection element under exposure to radiation is detected with a detection device. The radiation sensor is characterized by the fact that it comprises a scanning device with a single-axis or multi-axis tiltable scanning element. The facility to tilt the device means that the detection element can be used to detect radiation from different directions. The imaging sensor can be realized in a compact manner and be economically produced.