摘要:
A spin valve GMR element comprises a pair of magnetic biasing films disposed with a predetermined gap and a spin valve GMR film disposed in such a manner that at least both edge portions thereof are stacked on the pair of magnetic biasing films. The spin valve GMR film has a free layer containing a magnetic layer large in its saturation magnetization such as a Co containing magnetic layer. The magnetic biasing film has a laminate film composed of a high saturation magnetization magnetic layer and a magnetic hard layer. The high saturation magnetization layer, for a saturation magnetization Ms.sup.free of a free layer and a saturation magnetization of Ms.sup.hard of a magnetic hard layer, has a saturation magnetization Ms.sup.high satisfying at least one of Ms.sup.high .gtoreq.Ms.sup.free and Ms.sup.high .gtoreq.Ms.sup.hard. According to such a bias structure, when a spin valve GMR element of an over laid structure is narrowed in its track, Barkhausen noise can be effectively suppressed from occurring.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
A base film of a hard magnetic film containing Co as a structural element has a crystal metal base film such as a Cr film formed on the main surface of a substrate and a reactive base film (mixing layer) formed between the substrate and the crystal metal base film and having a reactive amorphous layer containing a structural element of the substrate and a structural element of the crystal metal base film. A hard magnetic film containing Co as a structural element is formed on the crystal metal base film. With the crystal metal base film such as the Cr film formed on an amorphous layer, a hard magnetic film with a bi-crystal structure can be obtained with high reproducibility. With the hard magnetic film, magnetic characteristics such as coercive force Hc, residual magnetization Mr, saturated magnetization Ms, and square ratio S can be improved without need to use a thick base film. The hard magnetic film containing Co as a structural element is applied to a bias magnetic field applying film of a magnetoresistance effect device and a record layer of a magnetic record medium.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
A base film of a hard magnetic film containing Co as a structural element has a crystal metal base film such as a Cr film formed on the main surface of a substrate and a reactive base film (mixing layer) formed between the substrate and the crystal metal base film and having a reactive amorphous layer containing a structural element of the substrate and a structural element of the crystal metal base film. A hard magnetic film containing Co as a structural element is formed on the crystal metal base film. With the crystal metal base film such as the Cr film formed on an amorphous layer, a hard magnetic film with a bi-crystal structure can be obtained with high reproducibility. With the hard magnetic film, magnetic characteristics such as coercive force Hc, residual magnetization Mr, saturated magnetization Ms, and square ratio S can be improved without need to use a thick base film. The hard magnetic film containing Co as a structural element is applied to a bias magnetic field applying film of a magnetoresistance effect device and a record layer of a magnetic record medium.
摘要:
A magnetoresistance effect element includes a nonmagnetic spacer layer, first and second ferromagnetic layer separated by the nonmagnetic spacer layer, and a nonmagnetic conductivity layer. The first ferromagnetic layer has a magnetization direction at an angle relative to a magnetization direction of the second ferromagnetic layer at zero applied magnetic field. The second ferromagnetic layer has first and second ferromagnetic films antiferromagnetically coupled to one another and an antiferromagnetically coupling film located between and in contact with the first and second ferromagnetic films. The magnetization of the first ferromagnetic layer freely rotates in a magnetic field signal. The nonmagnetic conductivity layer is disposed in contact with the first ferromagnetic layer so that the first ferromagnetic layer is disposed between the nonmagnetic high-conductivity layer and the nonmagnetic spacer layer. The first ferromagnetic layer has a film thickness between 0.5 nanometers and 4.5 nanometers.
摘要:
A first layer region of a magnetically pinned layer in a spin valve structure, which is relatively remoter from a non-magnetic intermediate layer, is made of a ferromagnetic material containing at least one element selected from the group consisting of Cr (chrome), Rh (rhodium), Os (osmium), Re (rhenium), Si (silicon), Al (aluminum), Be (beryllium), Ga (gallium), Ge (germanium), Te (tellurium), B (boron), V (vanadium), Ru (ruthenium), Ir (iridium), W (tungsten), Mo (molybdenum), Au (gold), Pt (platinum), Ag (silver) and Cu (copper). Thereby, it is possible to provide a structure of the magnetically pinned layer, which can be readily made using a conventional deposition method and can ensure a sufficient electron reflecting effect on the part of the magnetically pinned layer, and to provide a magnetoresistive element using a spin valve film including the particular structure.
摘要:
A spin valve GMR element comprises a spin valve GMR film stacked in turn a pinned layer, a non-magnetic layer, and a free layer of which magnetization direction varies according to an external magnetic field, and a magnetic biasing film providing a bias magnetic field to the free layer. A spin valve GMR film can be a dual element type. A magnetic biasing film has a stacked film of a high saturation magnetization magnetic layer and a hard magnetic layer. The high saturation magnetization magnetic layer has saturation magnetization Ms.sup.high which, when saturation magnetization of the free layer is Ms.sup.free and saturation magnetization of the hard magnetic layer is Ms.sup.hard, satisfies at least one of Ms.sup.high .gtoreq.Ms.sup.free or Ms.sup.high .gtoreq.Ms.sup.hard. In a spin valve GMR head of a reversed structure or a dual element type, even when a track width is narrowed, occurrence of Barkhausen noise can be effectively suppressed.
摘要:
A magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer formed on a metallic buffer layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the metallic buffer layer and the first magnetic layer. Or a magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer composed of a laminated film of a magnetic undercoat layer and a ferromagnetic layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the middle non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the magnetic undercoat layer and the ferromagnetic layer.
摘要:
A base film of a hard magnetic film containing Co as a structural element has a crystal metal base film such as a Cr film formed on the main surface of a substrate and a reactive base film (mixing layer) formed between the substrate and the crystal metal base film and having a reactive amorphous layer containing a structural element of the substrate and a structural element of the crystal metal base film. A hard magnetic film containing Co as a structural element is formed on the crystal metal base film. With the crystal metal base film such as the Cr film formed on an amorphous layer, a hard magnetic film with a bi-crystal structure can be obtained with high reproducibility. With the hard magnetic film, magnetic characteristics such as coercive force Hc, residual magnetization Mr, saturated magnetization Ms, and square ratio S can be improved without need to use a thick base film. The hard magnetic film containing Co as a structural element is applied to a bias magnetic field applying film of a magnetoresistance effect device and a record layer of a magnetic record medium.