摘要:
A computer system which shortens standby time of CPUs and improves CPU processing efficiency of a performance mode upon switching from the performance mode (parallel operation) to a safety mode (master/checker operation) is provided. In a computer system including: at least two CPUs; a programmable interrupt controller for interrupting the CPUs; and a comparator for mutually comparing outputs of the CPUs, switching between the performance mode of executing mutually different processes by the CPUs, respectively, to improve performance and the safety mode of executing mutually the same processes by the CPUs and collating results by the comparator to detect failure can be carried out; CPUs to be interrupted can be set for each interrupt factor; and whether the performance mode is to be executed or the safety mode is to be executed can be set for each interrupt factor.
摘要:
A computer system which shortens standby time of CPUs and improves CPU processing efficiency of a performance mode upon switching from the performance mode (parallel operation) to a safety mode (master/checker operation) is provided. In a computer system including: at least two CPUs; a programmable interrupt controller for interrupting the CPUs; and a comparator for mutually comparing outputs of the CPUs, switching between the performance mode of executing mutually different processes by the CPUs, respectively, to improve performance and the safety mode of executing mutually the same processes by the CPUs and collating results by the comparator to detect failure can be carried out; CPUs to be interrupted can be set for each interrupt factor; and whether the performance mode is to be executed or the safety mode is to be executed can be set for each interrupt factor.
摘要:
In an A/D converter and a microcontroller including the same, the number of selection patterns of analog input channels is increased for each A/D conversion and the A/D conversion is conducted using an A/D converter having only fundamental functions without imposing load onto a CPU. The A/D converter or a DMA transfer device includes an A/D conversion table including one or more entries. Each entry includes enable bits for setting whether or not an A/D conversion is executed for the respective analog input channels and a plurality of count number bits for setting a number of executions of the A/D conversion.
摘要:
This invention provides communications systems that enable broadcasting while making use of the simplicity of the prior art and also provides control devices and information processing systems incorporating the communications system. In this invention, chip-select signals are provided for transmitting (TXCSi) and receiving (RXCSi) independently as well as for individual chips as in the prior art. That is, a group of signals indicating whether or not a slave node is selected as the node to transmit signals to a master node and the direction of communications are output from the master node to the slave node.
摘要:
This invention provides communications systems that enable broadcasting while making use of the simplicity of the prior art and also provides control devices and information processing systems incorporating the communications system. In this invention, chip-select signals are provided for transmitting (TXCSi) and receiving (RXCSi) independently as well as for individual chips as in the prior art. That is, a group of signals indicating whether or not a slave node is selected as the node to transmit signals to a master node and the direction of communications are output from the master node to the slave node.
摘要:
In an A/D converter and a microcontroller including the same, the number of selection patterns of analog input channels is increased for each A/D conversion and the A/D conversion is conducted using an A/D converter having only fundamental functions without imposing load onto a CPU. The A/D converter or a DMA transfer device includes an A/D conversion table including one or more entries. Each entry includes enable bits for setting whether or not an A/D conversion is executed for the respective analog input channels and a plurality of count number bits for setting a number of executions of the A/D conversion.
摘要:
A microcontroller capable of improving processing performance as a whole by executing different programs by a plurality of CPUs and capable of detecting abnormality for safety-required processing by evaluating results of the same processing executed by the plurality of CPUs. A plurality of processing systems including CPUs and memories are provided, data output from the CPUs in each of the processing systems is separately compressed and stored by compressors for each of the CPUs, respectively. The compressed storage data is mutually compared by a comparator, and abnormality of processing can be detected when the comparison result indicates a mismatch. Even when the timings by which the same processing results are obtained are different when the plurality of CPUs asynchronously execute the same processing, the processing results of both of them can be easily compared with each other since compression is carried out by the compressors. Moreover, since the comparison of the comparator is enabled when comparison enable is given from all the CPUs, the comparison operation result can be obtained based on the timing at which the results of compression by the plurality of compressors are determined.
摘要:
A microcontroller capable of improving processing performance as a whole by executing different programs by a plurality of CPUs and capable of detecting abnormality for safety-required processing by evaluating results of the same processing executed by the plurality of CPUs. A plurality of processing systems including CPUs and memories are provided, data output from the CPUs in each of the processing systems is separately compressed and stored by compressors for each of the CPUs, respectively. The compressed storage data is mutually compared by a comparator, and abnormality of processing can be detected when the comparison result indicates a mismatch. Even when the timings by which the same processing results are obtained are different when the plurality of CPUs asynchronously execute the same processing, the processing results of both of them can be easily compared with each other since compression is carried out by the compressors. Moreover, since the comparison of the comparator is enabled when comparison enable is given from all the CPUs, the comparison operation result can be obtained based on the timing at which the results of compression by the plurality of compressors are determined.
摘要:
A vehicle control system which can ensure high reliability, real-time processing, and expandability with a simplified ECU configuration and a low cost by backing up an error through coordination in the entire system without increasing a degree of redundancy of individual controllers beyond the least necessary level. The vehicle control system comprises a sensor controller for taking in sensor signals indicating a status variable of a vehicle and an operation amount applied from a driver, a command controller for generating a control target value based on the sensor signals taken in by the sensor controller, and an actuator controller for receiving the control target value from the command controller and operating an actuator to control the vehicle, those three controller being interconnected via a network. The actuator controller includes a control target value generating unit for generating a control target value based on the sensor signals taken in by the sensor controller and received by the actuator controller via the network when the control target value generated by the command controller is abnormal, and controls the actuator in accordance with the control target value generated by the control target value generating unit.
摘要:
A vehicle control system which can ensure high reliability, real-time processing, and expandability with a simplified ECU configuration and a low cost by backing up an error through coordination in the entire system without increasing a degree of redundancy of individual controllers beyond the least necessary level. The vehicle control system comprises a sensor controller for taking in sensor signals indicating a status variable of a vehicle and an operation amount applied from a driver, a command controller for generating a control target value based on the sensor signals taken in by the sensor controller, and an actuator controller for receiving the control target value from the command controller and operating an actuator to control the vehicle, those three controller being interconnected via a network. The actuator controller includes a control target value generating unit for generating a control target value based on the sensor signals taken in by the sensor controller and received by the actuator controller via the network when the control target value generated by the command controller is abnormal, and controls the actuator in accordance with the control target value generated by the control target value generating unit.