摘要:
An image analyzer for analyzing the position of a vehicle driver in a three-dimensional coordinate system. The analyzer comprises a light emitting element for emitting an infrared light the driver's face portion and an image detector arranged to receive reflected infrared light to generate an optical image of the driver's face portion. A microcomputer includes a memory for storing an electronic image corresponding to the optical image and processes the stored image to determine the position of a facial feature, such as an eye, in a three-dimensional coordinate system. Position indicating data is utilized in a driver assistance system.
摘要:
In a fog detecting apparatus with optoelectronic system, comprising infrared-emitting means and infrared-receiving means, is provided means for adjusting a reference which is compared with a voltage value of a detecting signal generated according to an electrical signal produced by the infrared-receiving means in order to distinguish whether a windshield of a vehicle is in the fogging condition or not. The reference is changed according to the detecting signal which is produced when the windshield is in good condition against the fogging after a fog removing apparatus has been actuated to remove the fog attached on the windshield, so that the fogging condition is detected in accuracy independently of the contamination of the optoelectronic system or the like.
摘要:
Advances in optical coherence tomography (OCT) have prompted a transition from time domain OCT, providing 2D OCT images, to spectral domain OCT, which has a 3D imaging capability. Yet conventional technology offers little toward the goal of inter-device compatibility between extant 2D OCT images and newer 3D OCT images for the same or comparable subjects, as in the context of ongoing monitoring the quantitative status of a patient's eyes. The inventive methodology is particularly useful to identify the scan location of tissue in a 2D OCT image within the 3D OCT volumetric data, thereby allowing clinicians to image a patient via 3D OCT, based on available 2D OCT images, with minimal inter-device variation.
摘要:
An object of the present invention is to realize an optical gate switch of a monolithic integration type which can avoid problems of losses caused by light coupling of a phase modulation unit to a interferometer optical circuit unit, and can be minimized by integration. The optical gate switch according to the present invention includes an optical waveguide wafer in which a quantum well having a phase modulation effect which is generated by an intersubband transition is set as a core layer; a Michelson interferometer formed on the optical waveguide wafer; and a variable light intensity attenuation unit adjusting a light balance of an interferometer in one of reflection side arms of the Michelson interferometer reflection.
摘要:
A bolt has a male screw with a surface hardening portion that has an increased surface hardness and that is applied with a compressive residual stress. The male screw is formed by cutting the bolt, and performing a process to provide at least on the surface of the male screw of the bolt the surface hardening portion that has increased hardness and that is applied with a compressive residual stress. As a result, the fatigue resistance of the male screw is improved and the bolt is effective for use in a portion where the male screw is subject to a repetitive stress.
摘要:
A method is disclosed to automatically segment 3D and higher-dimensional images into two subsets without user intervention, with no topological restriction on the solution, and in such a way that the solution is an optimal in a precisely defined optimization criterion, including an exactly defined degree of smoothness. A minimum-cut algorithm is used on a graph devised so that the optimization criterion translates into the minimization of the graph cut. The minimum cut thus found is interpreted as the segmentation with desired property.
摘要:
A scan location matching (SLM) method identifies conventional time domain optical coherence tomography (TD-OCT) circle scan locations within three-dimensional spectral domain OCT scan volumes. A technique uses both the SLM algorithm and a mathematical retinal nerve fiber bundle distribution (RNFBD) model, which is a simplified version of the anatomical retinal axon bundle distribution pattern, to normalize TD-OCT thickness measurements for the retinal nerve fiber layer (RNFL) of an off-centered TD-OCT circle scan to a virtual location, centered on the optic nerve head. The RNFBD model eliminates scan-to-scan RNFL thickness measurement variation caused by manual placement of TD-OCT circle scan.
摘要:
The present invention provides a disinfectant that contains olanexidine in a concentration sufficient to exhibit an effective bactericidal effect, and that has hardly any side effects such as skin irritation. Specifically, the present invention provides a disinfectant containing an aqueous solution that contains olanexidine and at least an equimolar amount of gluconic acid, and substantially contains neither an acid other than gluconic acid nor a salt of the acid other than gluconic acid.
摘要:
A work information generation system includes: a plurality of terminals that display a document; and a server that conducts communications with the plurality of terminals, wherein each of the plurality of terminals includes a notification section that sends notification of identification information given to each of the plurality of terminals and identification information of a document in association with each other to the server in response to display of the document, and wherein the server includes: a determination section; a work information generation section; and a work information retention section as described in the specification.
摘要:
In the context of the early detection and monitoring of eye diseases, such as glaucoma and diabetic retinopathy, the use of optical coherence tomography presents the difficulty, with respect to blood vessel segmentation, of weak visibility of vessel pattern in the OCT fundus image. To address this problem, a boosting learning approach uses three-dimensional (3D) information to effect automated segmentation of retinal blood vessels. The automated blood vessel segmentation technique described herein is based on 3D spectral domain OCT and provides accurate vessel pattern for clinical analysis, for retinal image registration, and for early diagnosis and monitoring of the progression of glaucoma and other retinal diseases. The technique employs a machine learning algorithm to identify blood vessel automatically in 3D OCT image, in a manner that does not rely on retinal layer segmentation.