摘要:
Provided is a method of monitoring link performance and diagnosing an active link state without interrupting traffic in an Ethernet passive optical network (EPON) while the link is in the active state. The method of monitoring link performance and diagnosing an active link state without interrupting data flow to logic links which are in active states in the EPON, includes: a) allowing an operator of the EPON to select a link performance monitoring function or a link active state diagnosing function; b-1) if the link performance monitoring function is selected, setting a monitoring cycle timer and periodically transmitting a performance information request frame from a local node to a remote node; b-2) if the remote node receives the performance information request frame, collecting corresponding link performance information and transmitting a response frame from the remote node to the local node in a format which is predetermined in accordance with a corresponding frame format; b-3) if the local node receives the response frame from the remote node, analyzing the performance information of the response frame and determining whether the link performance has deteriorated or if a failure has occurred in the local node; b-4) if the deterioration of the link function or the degree of the failure reaches a predetermined threshold, reporting to an upper layer that a failure has occurred.
摘要:
A semiconductor device and a method of manufacturing the semiconductor device, in which the semiconductor device includes a semiconductor substrate in which PMOS transistor regions and NMOS transistor regions are formed, a PMOS transistor including P-type source and drain regions and a gate electrode, and an NMOS transistor formed on an Si channel region between N-type source and drain regions. The PMOS transistor is formed in each PMOS transistor region, and the gate electrode is formed on a high-dielectric gate insulating film formed on an SiGe channel region between the P-type source and drain regions. Further, the NMOS transistor includes a high-dielectric gate insulating film and a gate electrode formed on the gate insulating film, and the NMOS transistor is formed in each NMOS transistor region.
摘要:
Semiconductor devices are fabricated using a plasma process with a non-silane gas that includes deuterium, and which may result in improved device reliability and/or other improved device operational characteristics. One such method can include forming a gate oxide layer on a transistor region, which is defined on a substrate, and forming a gate electrode on the gate oxide layer. An etch stop layer is formed on the gate oxide layer and the gate electrode. A plasma process is performed on the interface between the gate oxide layer and the substrate using a non-silane treatment gas including deuterium. An interlayer dielectric layer is formed on the etch stop layer. A bottom metal line is formed on the interlayer dielectric layer.
摘要:
A method of forming an integrated circuit includes selectively forming active channel regions for NMOS and PMOS transistors on a substrate parallel to a crystal orientation thereof and selectively forming source/drain regions of the NMOS transistors with Carbon (C) impurities therein.
摘要:
Disclosed are processes and techniques for fabricating semiconductor substrates for the manufacture of semiconductor devices, particularly CMOS devices, that include selectively formed, high quality single crystal or monocrystalline surface regions exhibiting different crystal orientations. At least one of the surface regions will incorporate at least one faceted epitaxial semiconductor structure having surfaces that exhibit a crystal orientation different than the semiconductor region on which the faceted epitaxial semiconductor structure is formed. According, the crystal orientation in the channel regions of the NMOS and/or PMOS devices may be configured to improve the relative performance of at least one of the devices and allow corresponding redesign of the semiconductor devices fabricated using such a process.
摘要:
In methods of selectively forming an epitaxial semiconductor layer on a single crystalline semiconductor and semiconductor devices fabricated using the same, a single crystalline epitaxial semiconductor layer and a non-single crystalline epitaxial semiconductor layer are formed on a single crystalline semiconductor and a non-single crystalline semiconductor pattern respectively, using a main semiconductor source gas and a main etching gas. The non-single crystalline epitaxial semiconductor layer is removed using a selective etching gas. The main gases and the selective etching gas are alternately and repeatedly supplied at least two times to selectively form an elevated single crystalline epitaxial semiconductor layer having a desired thickness only on the single crystalline semiconductor. The selective etching gas suppresses formation of an epitaxial semiconductor layer on the non-single crystalline semiconductor pattern.
摘要:
Methods of fabricating semiconductor integrated circuit devices are provided. A substrate is provided with gate patterns formed on first and second regions. Spaces between gate patterns on the first region are narrower than spaces between gate patterns on the second region. Source/drain trenches are formed in the substrate on opposite sides of the gate patterns on the first and second regions. A first silicon-germanium (SiGe) epitaxial layer is formed that partially fills the source/drain trenches using a first silicon source gas. A second SiGe epitaxial layer is formed directly on the first SiGe epitaxial layer to further fill the source/drain trenches using a second silicon source gas that is different from the first silicon source gas.
摘要:
A semiconductor device having a locally buried insulation layer and a method of manufacturing a semiconductor device having the same are provided, in which a gate electrode is formed on a substrate, and oxygen ions are implanted into an active region to form a locally buried insulation layer. An impurity layer is formed on the locally buried insulation layer to form a source/drain. A silicide layer is formed on the source/drain and on the gate electrode. The locally buried insulation layer can prevent junction leakage, decrease junction capacitance and prevent a critical voltage of an MOS transistor from increasing due to body bias, thereby to improve characteristics of the device.
摘要:
Disclosed herein is a method of doping nanosized nickel (Ni) on the surface of carbon nanotubes to improve the hydrogen storage capacity of the carbon nanotubes. The method comprises: sonicating carbon nanotube samples produced by vapor deposition, in sulfuric acid solution, followed by filtration to remove a metal catalyst from the carbon nanotube samples; and doping the carbon nanotube samples in liquid phase solution, followed by drying and reduction, so as to dope nanosized nickel on the surface of the carbon nanotubes.
摘要:
The present invention discloses a transistor for a semiconductor device capable of preventing the generation of a depletion capacitance in a gate pattern due to the diffusion of impurity ions. The present invention also discloses a method of fabricating the transistor.