摘要:
In a video coder/decoder system using variable resolution adaptation, decoder techniques provide a mechanism to changing resolution of coded lower-resolution video to a higher resolution for rendering. Coded video data of a low resolution frame may be decoded. A motion estimation search may be performed between the decoded low resolution frame and a cache of previously-stored high resolution video frames. If the motion estimation search generates one or more matches, high resolution video data of the decoded frame may generated as a derivation of matching data from the cached video frames.
摘要:
In certain low-light or other poor image capture conditions, the camera capture settings may create noise fitting a known profile, including certain specific color ranges and signal frequencies, in the captured image. A pre-processor may identify frequency bands and DC offsets that may indicate noise in an image captured with known settings. Then the areas of the image containing the identified frequencies and offsets may be analyzed spatially and temporally to confirm that the identified regions are noise and not part of the scene and an appropriate filter defined.
摘要:
In a video coder/decoder system using variable resolution adaptation, decoder techniques provide a mechanism to changing resolution of coded lower-resolution video to a higher resolution for rendering. Coded video data of a low resolution frame may be decoded. A motion estimation search may be performed between the decoded low resolution frame and a cache of previously-stored high resolution video frames. If the motion estimation search generates one or more matches, high resolution video data of the decoded frame may generated as a derivation of matching data from the cached video frames.
摘要:
A scene-aware auto-exposure control process stabilizes changes in a camera's auto-exposure settings so as to reduce lighting and color flicker during image capture operations. A metric, referred to as the Modified Adjusted Luminance (MAL) metric, is defined to remain relatively constant as long as the lighting of the scene being captured remains relatively constant. Thus, scene changes such as an object moving into, out of, or around in a scene do not significantly affect the MAL metric's value and do not, therefore, trigger an exposure adjustment. Once the MAL metric indicates a scene's lighting is stable, the camera's auto-exposure operation may be suppressed. As long as incoming frames indicate a stable lighting condition (based on the MAL metric), auto-exposure operation may remain suppressed. When incoming frames result in a substantially different MAL over a specified number of frames, auto-exposure operation may be restored.
摘要:
A scene-aware auto-exposure control process stabilizes changes in a camera's auto-exposure settings so as to reduce lighting and color flicker during image capture operations. A metric, referred to as the Modified Adjusted Luminance (MAL) metric, is defined to remain relatively constant as long as the lighting of the scene being captured remains relatively constant. Thus, scene changes such as an object moving into, out of, or around in a scene do not significantly affect the MAL metric's value and do not, therefore, trigger an exposure adjustment. Once the MAL metric indicates a scene's lighting is stable, the camera's auto-exposure operation may be suppressed. As long as incoming frames indicate a stable lighting condition (based on the MAL metric), auto-exposure operation may remain suppressed. When incoming frames result in a substantially different MAL over a specified number of frames, auto-exposure operation may be restored.
摘要:
A scene-aware auto-exposure control process stabilizes changes in a camera's auto-exposure settings so as to reduce lighting and color flicker during image capture operations. A metric, referred to as the Modified Adjusted Luminance (MAL) metric, is defined to remain relatively constant as long as the lighting of the scene being captured remains relatively constant. Thus, scene changes such as an object moving into, out of, or around in a scene do not significantly affect the MAL metric's value and do not, therefore, trigger an exposure adjustment. Once the MAL metric indicates a scene's lighting is stable, the camera's auto-exposure operation may be suppressed. As long as incoming frames indicate a stable lighting condition (based on the MAL metric), auto-exposure operation may remain suppressed. When incoming frames result in a substantially different MAL over a specified number of frames, auto-exposure operation may be restored.
摘要:
A scene-aware auto-exposure control process stabilizes changes in a camera's auto-exposure settings so as to reduce lighting and color flicker during image capture operations. A metric, referred to as the Modified Adjusted Luminance (MAL) metric, is defined to remain relatively constant as long as the lighting of the scene being captured remains relatively constant. Thus, scene changes such as an object moving into, out of, or around in a scene do not significantly affect the MAL metric's value and do not, therefore, trigger an exposure adjustment. Once the MAL metric indicates a scene's lighting is stable, the camera's auto-exposure operation may be suppressed. As long as incoming frames indicate a stable lighting condition (based on the MAL metric), auto-exposure operation may remain suppressed. When incoming frames result in a substantially different MAL over a specified number of frames, auto-exposure operation may be restored.
摘要:
A video coder employs techniques for applying frame rate adaptation and variable resolution adaptation in response to environmental coding factors present at the coding terminal. According to such techniques, a coder may estimate a coding quality level to be applied based on the environmental coding factors. The coder may retrieve from a controller table, settings for resolution and frame rate based on the estimated quality level. Optionally, the coder further may retrieve settings identifying a range of quantization parameters that may be used during coding. Prior to coding, the coder may configure input video data to match the resolution and frame rate settings retrieved from the controller table. Thereafter, the coder may code the reconfigured input video data by motion-compensation prediction constrained, as applicable, by the retrieved quantization parameter range.
摘要:
A coding technique is disclosed in which frames of a video sequence are assigned to one of a plurality of sub-channels to be transmitted to a decoder. The frames are coded according to predictive coding techniques such that ordinarily prediction references of the frames in each sub-channel only reach the reference frames that occur within the same sub-channel. Thus, if transmission errors arise with respect to one sub-channel, decoding may occur for another sub-channel until the transmission error is detected and corrected.
摘要:
Some embodiments provide a method for allowing a first device that is in a video conference with a second mobile device to remotely control the second mobile device. The method sends images captured by a camera of the first device to the second device. The method receives images captured by a camera of the second device. The method sends a command through a communication channel of a real-time communication session to the second device. The command is for instructing the second device to perform an operation that modifies the images captured by the camera of the second device.