摘要:
An exemplary display panel includes a plurality of monochrome pixels, a plurality of data lines and a plurality of control lines. Each monochrome pixel provides a specific color on the display panel. The data lines are electrically coupled to the monochrome pixels for providing the display data. The data lines includes a first data line electrically coupled to a part of the monochrome pixels, and the specific colors provided by the part of the monochrome pixels are of the same color. Besides, each of the control lines is electrically coupled to a part of the monochrome pixels for controlling the part of the monochrome pixels electrically coupled thereto whether to receive the display data from the data lines.
摘要:
An exemplary display panel includes a plurality of monochrome pixels, a plurality of data lines and a plurality of control lines. Each monochrome pixel provides a specific color on the display panel. The data lines are electrically coupled to the monochrome pixels for providing the display data. The data lines includes a first data line electrically coupled to a part of the monochrome pixels, and the specific colors provided by the part of the monochrome pixels are of the same color. Besides, each of the control lines is electrically coupled to a part of the monochrome pixels for controlling the part of the monochrome pixels electrically coupled thereto whether to receive the display data from the data lines.
摘要:
Exemplary backlight driving method and display device are provided. The display device includes a light source array. The light source array includes a first group of light-emitting rows and a second group of light-emitting rows. The backlight driving method includes the steps of: firstly, receiving a gate driving frequency of the display device; subsequently, generating a backlight driving frequency according to the gate driving frequency; and afterwards, sequentially providing a first row driving voltage to the first group of light-emitting rows in a first time period and sequentially providing a second row driving voltage to the second group of light-emitting rows in a second time period, according to the backlight driving frequency. The first time period and the second time period have different phases from each other, and the gate driving frequency is different from the backlight driving frequency.
摘要:
Exemplary backlight driving method and display device are provided. The display device includes a light source array. The light source array includes a first group of light-emitting rows and a second group of light-emitting rows. The backlight driving method includes the steps of: firstly, receiving a gate driving frequency of the display device; subsequently, generating a backlight driving frequency according to the gate driving frequency; and afterwards, sequentially providing a first row driving voltage to the first group of light-emitting rows in a first time period and sequentially providing a second row driving voltage to the second group of light-emitting rows in a second time period, according to the backlight driving frequency. The first time period and the second time period have different phases from each other, and the gate driving frequency is different from the backlight driving frequency.
摘要:
A method of fabricating an organic semiconductor device includes following steps. A gate conductive layer is formed on a substrate, and then a gate dielectric layer is formed. Next, patterned metal layers are formed on the gate dielectric layer beside the gate conductive layer. An electrode modified layer is then formed on the surface and the sidewall of each patterned metal layer, and the patterned metal layers and the electrode modified layers formed thereon serve as a source and a drain. Thereafter, an organic semiconductor layer is formed on the source and the drain and on a portion of the gate dielectric layer exposed between the source and the drain to be an active layer.
摘要:
Alignment precision enhancement of electronic component process on flexible substrate device and method thereof the same is proposed. The process step of a flexible substrate is put on a substrate holder, wherein the flexible substrate is fixed by a polymer tape. A plural of alignment marks is making for lithography process. An unstressed cut is separated the flexible substrate and substrate holder when the electronic component is made.
摘要:
The present invention provides a method for enhancing electrical characteristics of organic electronic devices, especially for an organic thin-film transistors, comprising the steps of: providing a substrate with a gate and an insulator layer formed thereon; preparing an organic solution by mixing materials of an organic semiconductor polymer, an organic insulator polymer, a conducting particle and a solvent; forming an organic semiconductor layer on top of the insulator layer between the source and the drain using the organic solvent. Wherein, the organic semiconductor polymer can be a polymer selected from the group consisting of poly(3-alkylthiophene) (P3AT) with different alkyl side groups of 2, 4, 6, 8, 10, 12, and 18, as the P3HT is a P3AT with alkyl side group of 6, and the organic insulator polymer can be a polymer selected from the group consisting of poly(methylmethacrylate) (PMMA), and polybutylene terephthalate (PBT), etc. and the conducting particle can be a kind of particle selected from the group consisting of carbon nanotubes (CNTs), C60, and nano silver particle, and so on, and the solvent can be a solvent selected from the group consisting of xylene, toluene, and THF, and so forth.
摘要:
A manufacturing method of an active layer of a thin film transistor is provided. The method includes following steps. First a substrate is provided, and a semiconductor precursor solution is then prepared through a liquid process. Thereafter, the semiconductor precursor solution is provided on the substrate to form a semiconductor precursor thin film. After that, a light source is used to irradiate the semiconductor precursor thin film to remove residual solvent and allow the semiconductor precursor thin film to produce semiconductor property, so as to form a semiconductor active layer.
摘要:
A method of forming an electrode of a semiconductor device is provided. A material layer comprising an organo-metallic compound is first formed on a substrate. Thereafter, an electrode is formed by irradiating the material layer through utilizing the heating property of laser. Next, the material layer is patterned by utilizing the photochemical or heating properties of laser using a laser. Because laser irradiation is substituted the traditional heating way, it can reduce process temperature. Furthermore, because the laser is used for patterning the material layer to form the electrode, therefore an electrode pattern with a greater precision may be obtained compared to that obtained by using the photolithography process.
摘要:
A thin film transistor is provided. The thin film transistor includes a substrate, a gate, a source/drain, an insulating layer, and a semiconductor active layer. The gate and the source/drain are respectively deposited on the substrate and are separated by the insulating layer on the substrate. The semiconductor active layer connects the source and the drain. The material of the semiconductor active layer is a semiconductor precursor which produces semiconductor property after being irradiated by a light source. A liquid crystal display which includes the above thin film transistor is also provided.