Abstract:
Multi-chip package includes first through Nth semiconductor chips, each of which includes an input/output pad, an input/output driver coupled to the input/output pad, and an internal circuit. Each of the first through Nth semiconductor chips includes an internal pad for coupling the internal input/output driver and the internal circuit. The internal pads of the first through Nth semiconductor chips are coupled to each other such as via a common pad installed at a substrate. The input/output pad of the first semiconductor chip directly receives an input/output signal transmitted via a corresponding pin of the multi-chip package. The second through Nth semiconductor chips indirectly receive the input/output signal via the internal pads coupled to each other. The multi-chip package can improve signal compatibility by maintaining a parasitic load of a pin to at least the level of a single chip, when a signal is transmitted to the pin at high speed. Also, when a signal that is not necessarily transmitted at high speed is applied to a pin, semiconductor chips can be packaged according to the preexisting methods.
Abstract:
Multi-chip package includes first through Nth semiconductor chips, each of which includes an input/output pad, an input/output driver coupled to the input/output pad, and an internal circuit. Each of the first through Nth semiconductor chips includes an internal pad for coupling the internal input/output driver and the internal circuit. The internal pads of the first through Nth semiconductor chips are coupled to each other such as via a common pad installed at a substrate. The input/output pad of the first semiconductor chip directly receives an input/output signal transmitted via a corresponding pin of the multi-chip package. The second through Nth semiconductor chips indirectly receive the input/output signal via the internal pads coupled to each other. The multi-chip package can improve signal compatibility by maintaining a parasitic load of a pin to at least the level of a single chip, when a signal is transmitted to the pin at high speed. Also, when a signal that is not necessarily transmitted at high speed is applied to a pin, semiconductor chips can be packaged according to the preexisting methods.
Abstract:
A semiconductor memory device which provides an improved operation performance in response to a relatively low external power voltage is included. The device comprises a plurality of direct-current voltage generating circuits for generating a plurality of direct-current voltages and a plurality of reference voltage generating circuits for generating reference voltages for the plurality of the direct-current voltage generating circuits, respectively.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
Systems and methods for performing a PASR (partial array self-refresh) operation wherein a refresh operation for recharging stored data is performed on a portion (e.g., ½ ¼, ⅛, or {fraction (1/16)}) of one or more selected memory banks comprising a cell array in a semiconductor memory device. In one aspect, a PASR operation is performed by (1) controlling the generation of row addresses by a row address counter during a self-refresh operation and (2) controlling a self-refresh cycle generating circuit to adjust the self-refresh cycle output therefrom. The self-refresh cycle is adjusted in a manner that provides a reduction in the current dissipation during the PASR operation. In another aspect, a PASR operation is performed by controlling one or more row addresses corresponding to a partial cell array during a self-refresh operation, whereby a reduction in a self-refresh current dissipation is achieved by blocking the activation of a non-used block of a memory bank.
Abstract:
A semiconductor memory device reduces the distance occupied between a data path circuit and pads, and minimizes the length of data lines and main input/output lines, thereby improving an operating speed thereof. The semiconductor memory device includes a memory array divided into four array blocks which are independently arranged; a plurality of pads disposed in an area between the upper array blocks and the respective lower array blocks; a data path control circuit disposed in an area between the left array blocks and the respective right array blocks; a data path circuit disposed in a middle center area among the four array blocks; a plurality of data lines connecting the pads to the data path circuit; and a plurality of main input/output lines connecting the memory array to the data path circuit. In this configuration, a distance between the data lines and the main input/output lines and the data path circuit can be minimized.
Abstract:
A bit line sensing circuit of a semiconductor memory device is disclosed which includes a pull-up control signal generator that enables the peak current to be small by supplying to the P sense amplifier a pull-up voltage of the low level in an initial sensing process. When the peak current is stabilized, the pull-up control signal generator then reduces the time required for raising the pull-up voltage by very quickly raising the voltage of the pull-up control signal. This results in the advantages that the peak current can be greatly reduced without slowing sensing speed, and voltage noise caused from peak currents can be eliminated.
Abstract:
A semiconductor memory device for processing data in synchronization with a system clock applied from the exterior includes a circuit for generating a write latency control signal, a circuit for generating one active information enlarged signal from a plurality of active information signals generated in response to a column related control signal supplied from the exterior, and a circuit for holding internal operations of a column address counter, a burst length counter and a data transfer switching circuit for a prescribed time in which the active information enlarged signal is in an active state.
Abstract:
A row redundancy circuit for repairing a defective cell of a memory cell array in a semiconductor memory device comprising an address selector 300 for receiving two or more of address bit pairs, of an address bit pair group, designating the defective cell to selectively output one of the two or more address bit pairs, a fuse box 100 for storing the information of the remaining address bits of the address bit pair group, except the address bits of the selected address bit pair output by the address selector, and at least a redundant decoder 200, 200A for decoding the output signals of the address selector and fuse box, thereby maximizing the row redundancy efficiency.
Abstract:
A semiconductor memory device includes a memory core unit, N data output buffers, N data output ports, and a plurality of test logic circuits. The memory core unit stores test data through N data lines. The N data output buffers are respectively connected to the corresponding N data lines. The N data output ports are connected to the corresponding N data output buffers, and exchange the test data with an external tester respectively. The plurality of test logic circuits receives the test data through the K data lines from the N data lines, performs test logic operation on the received test data, and provides a data output buffer control signal that determines activation of K data output buffers of the N data output buffers in test mode. The semiconductor memory device reduces test cycle.