摘要:
Disclosed are a micro fiber and a method of manufacturing the micro fiber are proposed. The micro fiber may be manufactured by controlling thickness and Young's modulus thereof using hollow fiber.
摘要:
Disclosed are a micro fiber and a method of manufacturing the micro fiber are proposed. The micro fiber may be manufactured by controlling thickness and Young's modulus thereof using hollow fiber.
摘要:
Provided herein, inter alia, are a carbon fiber-reinforced polymer composite and a method for manufacturing the same. The carbon fiber-reinforced polymer composite may improve interfacial bonding force by modifying the surface of carbon fibers with an amphiphilic block copolymer and then forming a composite of the surface-modified carbon fibers with a polymer.
摘要:
Disclosed is a noise-absorbent fabric having a superior heat-insulation property and sound-insulating property and a method for manufacturing the same. The noise-absorbent fabric includes a noise-absorbing layer comprising a nonwoven fabric formed of a heat-resistant fiber and impregnated with a binder; and a metal film stacked thereon. As such, the noise-absorbent fabric having superior sound-absorbing property, heat-insulating property and sound-insulating property can be obtained and be applicable to parts maintained at high temperatures of 300° C. or greater. In addition, the noise-absorbent fabric can be moldable using the binder in a desired three-dimensional shape.
摘要:
Disclosed is a highly heat resistant sound absorbing material for a vehicle capable of maintaining a shape even at high temperatures of about 200° C. or above and which satisfies UL 94V-0 flame retardancy. More particularly, the a highly heat resistant sound absorbing material includes a fiber material having a limiting oxygen index (LOI) of at least about 25% and capable of maintaining a shape at a temperature of about 200° C. or above, and a thermosetting binder resin capable of maintaining a shape at a temperature of about 200° C., wherein the fiber material and thermosetting binder resin are provided at a specific proportion.
摘要:
The present invention relates to a synthetic leather for a steering wheel cover of a vehicle, and a method for preparing the same. The synthetic leather including a fiber base layer (101) including a microfiber nonwoven fabric, an urethane porous layer (102) formed on the fiber base layer, a polyurethane resin skin layer (104) formed on the urethane porous layer, and prepared by polymerizing an isocyanate compound and a polyol compound including polycarbonate-based polyol, fluorine-based polyol and ester-based polyol, and an adhesive layer (103) for adhering the urethane porous layer and the skin layer.
摘要:
Provided herein, inter alia, are a carbon fiber-reinforced polymer composite and a method for manufacturing the same. The carbon fiber-reinforced polymer composite may improve interfacial bonding force by modifying the surface of carbon fibers with an amphiphilic block copolymer and then forming a composite of the surface-modified carbon fibers with a polymer.
摘要:
Disclosed is a noise-absorbent fabric having a superior heat-insulation property and sound-insulating property and a method for manufacturing the same. The noise-absorbent fabric includes a noise-absorbing layer comprising a nonwoven fabric formed of a heat-resistant fiber and impregnated with a binder; and a metal film stacked thereon. As such, the noise-absorbent fabric having superior sound-absorbing property, heat-insulating property and sound-insulating property can be obtained and be applicable to parts maintained at high temperatures of 300° C. or greater. In addition, the noise-absorbent fabric can be moldable using the binder in a desired three-dimensional shape.
摘要:
The present invention relates to a method for molding a substantially improved heat-resistant sound absorbing and insulating material, which uses a sound absorbing material containing, based on 100 parts by weight of the sound absorbing material, an amount of about 20-80 parts by weight of a fiber material having a limiting oxygen index (LOI) of about 25% or greater and a heat resistance temperature of about 200° C. or greater and an amount of about 20-80 parts by weight of a thermosetting binder resin having a heat resistance temperature of about 200° C. or greater and is installed on an engine cylinder block and an automotive body panel above a muffler of a vehicle. The method includes: a releasing agent coating step of coating a releasing agent inside a heated die; a heated compression molding step of fixing a shape; and a cold compression step of stabilizing the shape.The substantially improved heat-resistant sound absorbing and insulating material molded according to the method can reduce the noise inside a vehicle by blocking radiated noise, which is generated from an engine and an exhaust system, from being transferred to the inside of the vehicle through an automotive body panel, can maintain its shape even under a high-temperature environment of about 200° C. or greater generated by the engine and the exhaust system, and can satisfy UL 94V-0 flame retardancy.
摘要:
The present invention relates to a method for molding a highly heat-resistant sound absorbing and insulating material, which uses a sound absorbing material containing 20-80 parts by weight of a fiber material having a limiting oxygen index (LOI) of 25% or greater and a heat resistance temperature of 200° C. or greater and 20-80 parts by weight of a thermosetting binder resin having a heat resistance temperature of 200° C. or greater and is installed on an engine cylinder block and an automotive body panel above a muffler of a vehicle. More specifically, the method includes a releasing agent coating step of coating a releasing agent inside a hot die, a hot compression molding step of fixing a shape, and a cold compression step of stabilizing the shape.The highly heat-resistant sound absorbing and insulating material molded according to the method can reduce the noise inside a vehicle by blocking radiated noise, which is generated from an engine and an exhaust system, from being transferred to the inside of the vehicle through an automotive body panel, can maintain its shape even under a high-temperature environment of 200° C. or greater generated by the engine and the exhaust system, and can satisfy UL 94V-0 flame retardancy.