Abstract:
A memory circuit includes a memory element which includes a first electrode layer including lithium. The memory element further includes a second electrode layer and a solid-state electrolyte layer arranged between the first electrode layer and the second electrode layer. The memory circuit also includes a memory access circuit configured to determine a memory state of the memory element.
Abstract:
A battery, a battery element and a method for forming a battery element are provided. In an embodiment, a battery element includes a substrate with a plurality of trenches extending into the substrate, wherein a part of a trench of the plurality of trenches is filled with a solid state battery structure, and wherein the trench of the plurality of trenches comprises a cavity.
Abstract:
A battery element includes a substrate with a plurality of trenches extending into the substrate. At least a part of each trench of the plurality of trenches is filled with a solid state battery structure. Further, the battery element includes a front side battery element electrode arranged at a front side of the substrate and electrically connected to a first electrode layer of the solid state battery structures within the plurality of trenches. Additionally, the battery element includes a backside battery element electrode arranged at a backside of the substrate and electrically connected to a second electrode layer of the solid state battery structures within the plurality of trenches.
Abstract:
A method for manufacturing a plurality of nanowires, the method including: providing a carrier comprising an exposed surface of a material to be processed and applying a plasma treatment on the exposed surface of the material to be processed to thereby form a plurality of nanowires from the material to be processed during the plasma treatment.
Abstract:
A battery includes at least two externally accessible battery electrodes to provide a supply voltage and at least more than half of a wafer including at least two wafer electrodes. The wafer includes a plurality of trenches reaching into the wafer. At least a part of a trench of the plurality of trenches is filled with a solid state battery structure. The solid state battery structure within the trench includes electrodes electrically connected to the wafer electrodes.
Abstract:
A method for forming a battery element includes etching trenches into a substrate and crystal orientation dependent etching of the trenches. Further, the method includes forming solid state battery structures within the trenches.
Abstract:
A battery element includes a substrate with a plurality of trenches extending into the substrate. At least a part of each trench of the plurality of trenches is filled with a solid state battery structure. Further, the battery element includes a front side battery element electrode arranged at a front side of the substrate and electrically connected to a first electrode layer of the solid state battery structures within the plurality of trenches. Additionally, the battery element includes a backside battery element electrode arranged at a backside of the substrate and electrically connected to a second electrode layer of the solid state battery structures within the plurality of trenches.
Abstract:
A method for manufacturing an integrated circuit may include forming an electronic circuit in or above a carrier; forming at least one metallization layer structure configured to electrically connect the electronic circuit; and forming a solid state electrolyte battery at least partially in the at least one metallization layer structure, wherein the solid state electrolyte battery is electrically connected to the electronic circuit.
Abstract:
An integrated test circuit, including a plurality of test structure elements, wherein each test structure element includes at least a supply line and a test line; a plurality of select transistors, wherein each select transistor is assigned to one corresponding test structure element, and wherein each select transistor includes a first controlled region, a second controlled region, and a control region, wherein the second controlled region of each select transistor is respectively connected to the supply line of the corresponding test structure element, so that each select transistor is unambiguously assigned to the corresponding test structure element; and a plurality of contact pads, connected to respective first controlled regions and control regions of the plurality of select transistors, such that each test structure element of the plurality of test structure elements can be individually addressed by the plurality of contact pads.
Abstract:
A method for manufacturing a plurality of nanowires, the method including: providing a carrier comprising an exposed surface of a material to be processed and applying a plasma treatment on the exposed surface of the material to be processed to thereby form a plurality of nanowires from the material to be processed during the plasma treatment.