Abstract:
A memory arrangement having a memory cell field with columns and rows of writable memory cells, a memory controller which is configured to initiate an access to a first group of memory cells of a row of memory cells and, together with the access to the first group of memory cells, to initiate a read access to a second group of memory cells of the row of memory cells, and a verification circuit which is configured to check whether the access to the first group of memory cells has been performed on the correct row of memory cells on the basis of whether values read during the read access to the second group of memory cells match values previously stored by the second group of memory cells.
Abstract:
An electronic device includes a non-volatile memory having a plurality of memory cells, a memory controller, and an evaluator. The memory controller is configured to provide control signals to the non-volatile memory causing the non-volatile memory, or a selected memory section of the non-volatile memory, to be in one of a read state and a weak erase state, wherein the weak erase state causes the plurality of memory cells to maintain different states depending on different physical properties of the plurality of memory cells. The evaluator is configured to read out the plurality of memory cells and to provide a readout pattern during the read state, wherein the readout pattern that is provided after a preceding weak erase state corresponds to a physically unclonable function (PUF) response of the electronic device uniquely identifying the electronic device.
Abstract:
Embodiments of the invention describe compact memory arrays. In one embodiment, the memory cell array includes first, second, and third gate lines disposed over a substrate, the second gate lines are disposed between the first and the third gate lines. The first, the second, and the third gate lines form adjacent gate lines of the memory cell array. The memory cell array further includes first metal lines disposed over the first gate lines, the first metal lines coupled to the first gate lines; second metal lines disposed over the second gate lines, the second metal lines coupled to the second gate lines; and third metal lines disposed over the third gate lines, the third metal lines coupled to the third gate lines. The first metal lines, the second metal lines and the third metal lines are disposed in different metallization levels.
Abstract:
A memory circuit may include a plurality of electrically programmable memory cells arranged in an electrically programmable non-volatile memory cell array along a plurality of rows and a plurality of columns, a plurality of word lines, each word line coupled with a plurality of word portions of the plurality of memory cells, each word portion configured to store a data word, and at least one overlay word line coupled with a plurality of overlay portions, each overlay portion including overlay memory cells, each of the plurality of overlay portions including an overlay word. The memory circuit is configured to read, for each of the plurality of word lines, from each of the word portions simultaneously with an overlay portion of the plurality of overlay portions, with an output of the read operation being a result of a logic operation performed on the data word and the overlay word.
Abstract:
In various embodiments, a method of using a memory device is provided. The method may include storing data units, check units of a first code and check units of a second code in memory cells of the memory device, wherein the data units and the check units of the first code form code words of the first code, and wherein the data units and the check units of the second code form code words of the second code, applying the second code for error correction in at least a portion of the data units and/or in at least a portion of the check units of the first code, after the correcting the errors, retaining at least a retaining portion of the data units and of the check units of the first code and deleting at least a deleting portion of the check units of the second code, thereby freeing the memory cells that are occupied by the deleting portion of the check units of the second code, and during a subsequent using of the memory device, storing data in at least a reuse portion of the freed-up memory cells.
Abstract:
A memory circuit may include a plurality of electrically programmable memory cells arranged in a non-volatile memory cell array along a rows and columns, a plurality of word lines, each word line coupled with one or more memory cells, a plurality of non-volatile marking memory cells, wherein at least one word line of the plurality of word lines is associated with one or more marking memory cells, and a plurality of marking bit lines, each associated with marking memory cells, a plurality of marking source lines, each associated with marking memory cells, wherein, for marking memory cells, a physical connection from an associated marking source line and/or from an associated marking bit line to the marking memory cells defines those marking memory cells to a non-changeable state, wherein the marking memory cells are configured to identify the associated word line of respective marking memory cells in the non-changeable memory state.
Abstract:
In various embodiments, a method of using a memory device is provided. The method may include storing data units, check units of a first code and check units of a second code in memory cells of the memory device, wherein the data units and the check units of the first code form code words of the first code, and wherein the data units and the check units of the second code form code words of the second code, applying the second code for error correction in at least a portion of the data units and/or in at least a portion of the check units of the first code, after the correcting the errors, retaining at least a retaining portion of the data units and of the check units of the first code and deleting at least a deleting portion of the check units of the second code, thereby freeing the memory cells that are occupied by the deleting portion of the check units of the second code, and during a subsequent using of the memory device, storing data in at least a reuse portion of the freed-up memory cells.
Abstract:
A method of operating an integrated circuit includes determining at least one characteristic of at least one memory cell and conducting an operation for the at least one memory cell, wherein based on the at least one characteristic determined a disturbance for at least one additional memory cell is adjusted.
Abstract:
According to one embodiment, a chip is described comprising a transistor level, a semiconductor region in, below, or in and below the transistor level, a test signal circuit configured to supply a test signal to the semiconductor region, a determiner configured to determine a behavior of the semiconductor region in response to the test signal and a detector configured to detect a change of geometry of the semiconductor region based on the behavior and a reference behavior of the semiconductor region in response to the test signal.
Abstract:
An embodiment relates to a method for data processing that includes reading data, the data comprising overhead information and payload information, and determining a state of each portion of the data, wherein the state is one of a first binary state, a second binary state, and an undefined state. The method also includes decoding at least one portion of data that has an undefined state based on its location and based on the overhead information.