Abstract:
In an embodiment, a processor comprises: a plurality of cores each to execute instructions; a plurality of thermal sensors, at least one of which is associated with each of the cores; and a power control unit (PCU) coupled to the cores. The PCU includes a thermal control logic to preemptively throttle a first core by a first throttle amount when a temperature of a second core exceeds at least one thermal threshold. Note that this first core may be preemptively throttled independently of a throttling of the second core and may have a temperature of the first core does not exceed any thermal threshold. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor comprises: a plurality of cores each to execute instructions; a plurality of thermal sensors, at least one of which is associated with each of the cores; and a power control unit (PCU) coupled to the cores. The PCU includes a thermal control logic to preemptively throttle a first core by a first throttle amount when a temperature of a second core exceeds at least one thermal threshold. Note that this first core may be preemptively throttled independently of a throttling of the second core and may have a temperature of the first core does not exceed any thermal threshold. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a core to execute instructions, uncore logic coupled to the core, and a power controller to control a power consumption level. The power controller is configured to determine an activity level of the processor and responsive to this level, to generate a request for communication to a second processor coupled to the processor to request frequency coordination between the processors. Other embodiments are described and claimed.
Abstract:
A method and apparatus for per core performance states in a processor. Per Core Performance States (PCPS) refer to the parallel operating of individual cores at different voltage and/frequency points. In one embodiment of the invention, the processor has a plurality of processing cores and a power control module that is coupled with each of the plurality of processing cores. The power control module facilitates each processing core to operate at a different performance state from the other processing cores. By allowing its cores to have per core performance state configuration, the processor is able to reduce its power consumption and increase its performance.
Abstract:
One embodiment of an apparatus includes a semiconductor chip having a processor and an on-die non-volatile storage resource. The on-die non-volatile storage may store different, appropriate performance related information for different configurations and usage cases of the processor for a same performance state of the processor.
Abstract:
In an embodiment, a processor comprises: a plurality of cores each to execute instructions; a plurality of thermal sensors, at least one of which is associated with each of the cores; and a power control unit (PCU) coupled to the cores. The PCU includes a thermal control logic to preemptively throttle a first core by a first throttle amount when a temperature of a second core exceeds at least one thermal threshold. Note that this first core may be preemptively throttled independently of a throttling of the second core and may have a temperature of the first core does not exceed any thermal threshold. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a plurality of cores each to independently execute instructions, and a power control unit coupled to the plurality of cores to control power consumption of the processor, where the power control unit includes a control logic to reduce a maximum operating frequency of the processor if a first number of forced performance state transitions occurs in a first time period or a second number of forced performance state transitions occurs in a second time period. Other embodiments are described and claimed.
Abstract:
One embodiment of an apparatus includes a semiconductor chip having a processor and an on-die non-volatile storage resource. The on-die non-volatile storage may store different, appropriate performance related information for different configurations and usage cases of the processor for a same performance state of the processor.
Abstract:
In an embodiment, a processor includes a plurality of cores each to independently execute instructions, a plurality of graphics engines each to independently perform graphics operations; and, a power control unit coupled to the plurality of cores to control power consumption of the processor, where the power control unit includes a power excursion control logic to limit a power consumption level of the processor from being above a defined power limit for more than a duty cycle portion of an operating period. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor comprises: a plurality of cores each to execute instructions; a plurality of thermal sensors, at least one of which is associated with each of the cores; and a power control unit (PCU) coupled to the cores. The PCU includes a thermal control logic to preemptively throttle a first core by a first throttle amount when a temperature of a second core exceeds at least one thermal threshold. Note that this first core may be preemptively throttled independently of a throttling of the second core and may have a temperature of the first core does not exceed any thermal threshold. Other embodiments are described and claimed.