Abstract:
Molecular Graphene (MG) of a physical size and bonding character that render the molecule suitable as a channel material in an electronic device, such as a tunnel field effect transistor (TFET). The molecular graphene may be a large polycyclic aromatic hydrocarbon (PAH) employed as a discrete element, or as a repeat unit, within an active or passive electronic device. In some embodiments, a functionalized PAH is disposed over a substrate surface and extending between a plurality of through-substrate vias. Heterogeneous surfaces on the substrate are employed to direct deposition of the functionalized PAH molecule to surface sites interstitial to the array of vias. Vias may be backfilled with conductive material as self-aligned source/drain contacts. Directed self-assembly techniques may be employed to form local interconnect lines coupled to the conductive via material. In some embodiments, graphene-based interconnects comprising a linear array of PAH molecules are formed over a substrate.
Abstract:
Techniques are disclosed for forming through-silicon vias (TSVs) implementing a negative thermal expansion (NTE) material such as zirconium tungstate (ZrW2O8) or hafnium tungstate (HfW2O8). In some cases, the NTE material is disposed between the substrate and conductive core material of the TSV and serves to offset, at least in part, the coefficient of thermal expansion (CTE) mismatch there between, thus reducing heat-induced stresses and/or protrusion (pumping) of the conductive core material. The NTE material also may protect against leakage, voltage breakdown, and/or diffusion of the conductive core material. Furthermore, the NTE material may reduce radial stresses in high-aspect-ratio TSVs. In some cases, techniques disclosed herein may improve TSV reliability, enhance three-dimensional integration, and/or enhance performance in three-dimensional integrated circuits and/or other three-dimensional packages. Other embodiments which can employ techniques described herein will be apparent in light of this disclosure.
Abstract:
Techniques are disclosed for forming through-silicon vias (TSVs) implementing a negative thermal expansion (NTE) material such as zirconium tungstate (ZrW2O8) or hafnium tungstate (HfW2O8). In some cases, the NTE material is disposed between the substrate and conductive core material of the TSV and serves to offset, at least in part, the coefficient of thermal expansion (CTE) mismatch there between, thus reducing heat-induced stresses and/or protrusion (pumping) of the conductive core material. The NTE material also may protect against leakage, voltage breakdown, and/or diffusion of the conductive core material. Furthermore, the NTE material may reduce radial stresses in high-aspect-ratio TSVs. In some cases, techniques disclosed herein may improve TSV reliability, enhance three-dimensional integration, and/or enhance performance in three-dimensional integrated circuits and/or other three-dimensional packages. Other embodiments which can employ techniques described herein will be apparent in light of this disclosure.
Abstract:
Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.