Abstract:
Methods of forming the MRAM generally include forming an array of MTJ having sub-lithographic dimensions. The array can be formed by providing a substrate including a MTJ material stack including a reference ferromagnetic layer, a tunnel barrier layer, and a free ferromagnetic layer on an opposite side of the tunnel barrier layer. A hardmask layer is deposited onto the MTJ material stack. A first sidewall spacer is formed on the hardmask layer in a first direction. A second sidewall spacer is formed over the first sidewall in a second direction, wherein the first direction is orthogonal to the second direction. The second sidewall spacer intersects the first sidewall spacer. The first sidewall spacer is processed using the second sidewall spacer as mask to form a pattern of oxide pillars having sub-lithographic dimensions. The pattern of oxide pillars are transferred into the MTJ stack to form the array.
Abstract:
A computing device includes a wafer having multiple layers, the wafer including a top layer and sublayers disposed below it, the sublayers including one or more memory devices. The computing device also includes two or more shaped retainer elements shaped to mate with and at least partially surround at least the top of the wafer and in electrical contact with one or more chips disposed on a top of the top layer and a holding device that mates with the retainer elements to provide at least power to the retaining elements. So arranged, the wafer may be cooled.
Abstract:
Aspects of the present invention relate to a semiconductor-on-insulator (SOI) deep trench capacitor. One embodiment includes a method of forming a deep trench capacitor structure. The method includes: providing a SOI structure including a first and second trench opening in a semiconductor layer of the SOI structure, forming a doped semiconductor layer covering the semiconductor layer, forming a first dielectric layer covering the doped semiconductor layer, forming a node metal layer over the first dielectric layer, forming a second dielectric layer covering the node metal layer, filling a remaining portion of each trench opening with a metal layer to form an inner node in each of the trench openings, the metal layer including a plate coupling each of the inner nodes, and forming a node connection structure to conductively connect the node metal layer in the first trench opening with the node metal layer in the second trench opening.
Abstract:
An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
Abstract:
An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
Abstract:
A method including providing fins etched from a semiconductor substrate and covered by an oxide layer and a nitride layer, the oxide layer being located between the fins and the nitride layer, removing a portion of the fins to form an opening, forming a dielectric spacer on a sidewall of the opening, and filling the opening with a fill material, wherein a top surface of the fill material is substantially flush with a top surface of the nitride layer. The method may further include forming a deep trench capacitor in-line with one of the fins, removing the nitride layer to form a gap between the fins and the fill material, wherein the fill material has re-entrant geometry extending over the gap, and removing the re-entrant geometry and causing the gap between the fins and the fill material to widen.
Abstract:
A top semiconductor layer and conductive cap structures over deep trench capacitors are simultaneously patterned by an etch. Each patterned portion of the conductive cap structures constitutes a conductive cap structure, which laterally contacts a semiconductor material portion that is one of patterned remaining portions of the top semiconductor layer. Gate electrodes are formed as discrete structures that are not interconnected. After formation and planarization of a contact-level dielectric layer, passing gate lines are formed above the contact-level dielectric layer in a line level to provide electrical connections to the gate electrodes. Gate electrodes and passing gate lines that are electrically connected among one another constitute a gate line that is present across two levels.
Abstract:
A semiconductor structure and method of fabricating the same are disclosed. In an embodiment, the structure includes a first substrate having a buried plate or plates in the substrate. Each buried plate includes at least one buried plate contact, and a plurality of deep trench capacitors disposed about the at least one buried plate contact. A first oxide layer is disposed over the first substrate. The deep trench capacitors and buried plate contacts in the first substrate may be accessed for use in a variety of memory and decoupling applications.
Abstract:
An integrated FinFET and deep trench capacitor structure and methods of manufacture are provided. The method includes forming deep trench capacitor structures in a silicon on insulator (SOI) wafer. The method further includes forming a plurality of composite fin structures from a semiconductor material of the SOI wafer and conductive material of the deep trench capacitor structures. The method further includes forming a liner over the deep trench capacitor structures including the conductive material of the deep trench capacitor structures. The method further includes forming replacement gate structures with the liner over the deep trench capacitor structures protecting the conductive material during deposition and etching processes.
Abstract:
An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.