摘要:
A solid-state imaging device includes a first substrate including a light-sensing portion configured to perform photoelectric conversion of incident light and a wiring portion provided on a light-incident side; an optically transparent second substrate provided on a wiring portion side of the first substrate at a certain distance; a through-hole provided in the first substrate; a through-via provided in the through-hole; a front-surface-side electrode connected to the through-via and provided on a front surface of the first substrate; a back-surface-side electrode connected to the through-via and provided on a back surface of the first substrate; and a stopper electrode provided on the front-surface-side electrode and filling a space between the front-surface-side electrode and the second substrate.
摘要:
A solid-state imaging device includes a first substrate including a light-sensing portion configured to perform photoelectric conversion of incident light and a wiring portion provided on a light-incident side; an optically transparent second substrate provided on a wiring portion side of the first substrate at a certain distance; a through-hole provided in the first substrate; a through-via provided in the through-hole; a front-surface-side electrode connected to the through-via and provided on a front surface of the first substrate; a back-surface-side electrode connected to the through-via and provided on a back surface of the first substrate; and a stopper electrode provided on the front-surface-side electrode and filling a space between the front-surface-side electrode and the second substrate.
摘要:
A semiconductor device includes: a first semiconductor chip; and a second semiconductor chip that is stacked on the first semiconductor chip. The first semiconductor chip includes a first wiring portion of which a side surface is exposed at a side portion of the first semiconductor chip. The second semiconductor chip includes a second wiring portion of which a side surface is exposed at a side portion of the second semiconductor chip. The respective side surfaces of the first wiring portion and the second wiring portion, which are exposed at the side portions of the first semiconductor chip and the second semiconductor chip, are covered by a conductive layer, and the first wiring portion and the second wiring portion are electrically connected to each other through the conductive layer.
摘要:
A semiconductor device includes: a first semiconductor chip; and a second semiconductor chip that is stacked on the first semiconductor chip. The first semiconductor chip includes a first wiring portion of which a side surface is exposed at a side portion of the first semiconductor chip. The second semiconductor chip includes a second wiring portion of which a side surface is exposed at a side portion of the second semiconductor chip. The respective side surfaces of the first wiring portion and the second wiring portion, which are exposed at the side portions of the first semiconductor chip and the second semiconductor chip, are covered by a conductive layer, and the first wiring portion and the second wiring portion are electrically connected to each other through the conductive layer.
摘要:
A semiconductor image sensor module 1 at least includes a semiconductor image sensor chip 2 having a transistor forming region on a first main surface of a semiconductor substrate and having a photoelectric conversion region with a light incident surface formed on a second main surface on the side opposite to the first main surface and an image signal processing chip 3 for processing image signals formed in the semiconductor image sensor chip 2, wherein a plurality of bump electrodes 15a are formed on a first main surface, a plurality of bump electrodes 15b are formed on the image signal processing chip 3, both the chips 2 and 3 are formed to be laminated through heat dissipating means 4 and the plurality of bump electrodes 15a of the semiconductor image sensor chip 2 and the plurality of bump electrodes 15b on the image signal processing chip 3 are electrically connected.
摘要:
The present disclosure provides a method of manufacturing a solid-state imaging device, including, forming on a first substrate a semiconductor thin film which is to be photoelectric conversion sections, forming driving circuits on a face side of a second substrate, laminating the first substrate and the second substrate by disposing the first substrate and second substrate opposite to each other in a condition in which the semiconductor thin film is connected to the driving circuits, and removing the first substrate from the semiconductor thin film in a condition in which the semiconductor thin film is left on the second substrate side.
摘要:
A solid-state imaging device with a semiconductor substrate; a pixel formation region in the substrate and including a pixel made of a photoelectric conversion element; and an element isolation portion in the substrate and including an element isolation insulating layer and an impurity element isolation region. The element isolation insulating layer is positioned in a surface of the substrate. The impurity element isolation region is positioned under the element isolation insulating layer and within the substrate. The impurity element isolation region has at least a portion with a width that is narrower than that of the element isolation insulating layer. The photoelectric conversion element extends to a position under the element isolation insulating layer of the element isolation portion.
摘要:
An N-type buried diffusion layer as a portion of the collector region of a bipolar transistor and an N-type buried diffusion layer of a memory cell region are simultaneously formed, and the buried diffusion layer of the memory cell region serves as a potential groove for electrons. The threshold voltage of a MOS transistor in the memory cell region is higher than the threshold voltage of a MOS transistor in a peripheral circuit region, preventing an increase in the standby current in the memory cell region. This increases the soft error resistance of the memory cell and prevents a decrease in the operating speed and an increase in the consumption power.
摘要:
A plurality of elemental processors each include a local memory for storing data and task programs and an execution section for executing the task programs. A communications section transfers data among the processors. In a method of parallel processing with these elemental processors, a task program is executed in one of the processors. A detection operation is conducted to determine whether the data from the task program is to be copied to the local memories of other processors. The detection is based on predetermined information which is stored in the local memory of the processor which performs the task program and indicates which of the other processors will need the data. The detection also determines which of the other processors that will require access to the data are ready to receive the data. Concurrently and in parallel with the execution of the task program, the data is transmitted to each of the elemental processors that are awaiting the data with only a write instruction and without any communications instruction.
摘要:
In accessing a memory, each element processor executes a program constructed so as to designate an address belonging to a predetermined local address area for each element processor. When a memory write instruction is executed by an element processor, it is detected if the memory address designated by the instruction coincides with a predetermined address. If detected, a predetermined address belonging to a local address space of another element processor and assigned to the first-mentioned predetermined address, and the data written in response to the write instruction, are sent to the other element processor to instruct the data to be written therein as a copy data. A next task to be executed is decided independently for each element processor.