Abstract:
A system includes: a first converter for receiving a pre-stage input DC voltage from a power source, and providing a pre-stage output DC voltage including a first DC voltage or a second DC voltage; a modulator the modulator controlling the first converter; a second converter, coupled to the first converter; and a controller, the controller controlling an operation mode of the second converter and notifying the modulator about the operation mode of the second converter. The modulator and the controller receive an external voltage indication signal indicating whether the pre-stage output DC voltage is the first DC voltage or the second DC voltage. The modulator controls the first converter to output the pre-stage output DC voltage based on the voltage indication signal. The modulator notifies the controller about whether the pre-stage output DC voltage reaches a target level.
Abstract:
A system includes: a first converter for receiving a pre-stage input DC voltage from a power source, and providing a pre-stage output DC voltage including a first DC voltage or a second DC voltage; a modulator the modulator controlling the first converter; a second converter, coupled to the first converter; and a controller, the controller controlling an operation mode of the second converter and notifying the modulator about the operation mode of the second converter. The modulator and the controller receive an external voltage indication signal indicating whether the pre-stage output DC voltage is the first DC voltage or the second DC voltage. The modulator controls the first converter to output the pre-stage output DC voltage based on the voltage indication signal. The modulator notifies the controller about whether the pre-stage output DC voltage reaches a target level.
Abstract:
A thermoelectric converter includes a battery box, an outer box and a connecting ring. The battery box has a bottom case, a battery disposed in the bottom case, a battery circuit board electrically connected to the battery, and an application circuit board disposed at one end of the bottom case. The outer box has a heat sink surrounding and covering the battery box, a thermoelectric module electrically connected to the battery circuit board with the thermoelectric module electrically connected to the battery through the battery circuit board, a heat conducting plate overlying the thermoelectric module and configured to conduct thermal energy from ambient environment to the thermoelectric module for the thermoelectric module to absorb the thermal energy and convert the thermal energy to electricity, and a non-metal adiabatic frame surrounding the thermoelectric module and configured to prevent the thermal energy from being dissipated to the ambient environment.
Abstract:
A digital pulse width generator and a method for generating a digital pulse width are provided. The method for generating a digital pulse width includes the following. Generating a first period according to first set of bits of pulse data. The first period includes an interval. First phase signals are set to a first logic value in the interval and are generated according to first phase clock signals after an end of the interval. Second phase signals are set to the first logic value in the first period and are generated according to second phase clock signals after an end of the first period. Selecting a first signal from the first phase signals and the second phase signals according to second set of bits of the pulse data as a pulse width signal.
Abstract:
An electrical stimulation control circuit including a pulse generator, a processing circuit and an electrode is provided. The pulse generator is configured to generate a switching signal. The processing circuit generates an energy signal according to the switching signal. The electrode is configured to contact the skin of a living body and includes a first comb electrode and a second comb electrode. The first comb electrode receives the energy signal and includes a plurality of first electrodes. The first electrodes are electrically connected to each other and extended along a first direction. The second comb electrode receives a ground signal and includes a plurality of second electrodes. The second electrodes are electrically connected to each other and extended along a second direction opposite to the first direction. The first electrodes and the second electrodes are arranged in a staggered manner and electrically insulated from each other.
Abstract:
A maximum power point tracking method is provided. The method includes the following steps. Perform a power conversion operation by a converter according to a duty cycle signal so as to convert an input power supplied by an energy harvester into an output power, wherein the converter includes an inductor, and a current flowing through the inductor increases in an energy-storing duration and decreases in an energy-releasing duration. Obtain a length of the energy-releasing duration. Adjust the duty cycle signal according to the length of the energy-releasing duration so as to track a maximum power point of the input power or the output power.
Abstract:
A power point tracking method and a power point tracking apparatus are provided. A power point tracking method, comprising obtaining, by a controller, a first operating point and a first characteristic curve according to an open-circuit voltage or an input voltage of an energy harvester; calculating, by the controller, a first duty cycle signal according to the first operating point, a converter characteristic, an output voltage and a desired operating point; operating, by a converter, after receiving the first duty cycle signal; obtaining, by the controller, a second characteristic curve by calculating a second operating point according to the input voltage, the output voltage and the first duty cycle signal; and calculating, by the controller, a second duty cycle signal for transferring to the converter for a tracking control according to the second characteristic curve, the converter characteristic, the output voltage and the desired operating point.
Abstract:
A maximum power point tracking (MPPT) apparatus and a MPPT method are disclosed. A converter uses an inductor therein to perform power conversion operations according to a gating signal so as to convert an input electrical energy into an output electrical energy to a load. A controller monitors the voltage difference of the inductor and the element temperature, performs a lookup table operation or calculates the element characteristic according to the element temperature, and further uses the element characteristic and the voltage difference of the inductor for calculating a characteristic value and correspondingly adjusts the gating signal according to the characteristic value so as to track the power of the input electrical energy.
Abstract:
The disclosure discloses a motor vibration or noise frequency detecting apparatus and method thereof. A processor and a frequency sensing unit are used to process and quantify a time domain signal, obtain a frequency domain result through computation, obtain a characteristic amplitude from the frequency domain result, and set characteristic amplitude as a trigger amplitude, which is then compared with a to-be-measured amplitude for use in computations or triggering events. The disclosure is used in a motor apparatus to detect a time domain abnormality, save power consumption for long-term use of frequency domain detection, and allow the motor to be monitored for a long time under battery power so the loss of the production line caused by the unwarranted shutdown can be avoided.
Abstract:
A leakage-current start-up reference circuit is provided which includes a reference circuit unit, a trigger unit, a leakage-current generator and a disable control unit. The trigger unit includes a first transistor. The drain terminal of the trigger unit is connected to a start-up terminal of the reference circuit unit. The leakage-current generator includes a second transistor which is a gate-drain-tied transistor. The disable control unit includes a third transistor. The gate terminal of the disable control unit is connected to a control terminal of the reference circuit unit. The drain terminal of the leakage-current generator, the gate terminal of the trigger unit and the drain terminal of the disable control unit are joined at a node. The reference circuit unit is started up by the trigger unit to generate a reference current. A leakage-current start-up reference circuit having a current mirror is also provided.