摘要:
Various embodiments disclosed herein include a capacitive thermometer including a deflectable membrane and a sense electrode. The deflectable membrane is configured to adjust a capacitive value based on a temperature of the deflectable membrane.
摘要:
Aspects of a microelectromechanical device, an array of microelectromechanical devices, a method of manufacturing a microelectromechanical device, and a method of operating a microelectromechanical device, are discussed herein. The microelectromechanical device may include: a substrate; a diaphragm mechanically coupled to the substrate, the diaphragm comprising a stressed region to buckle the diaphragm into one of two geometrically stable positions; an actuator mechanically coupled to the diaphragm, the actuator comprising a piezoelectric layer over the diaphragm; a controller configured to provide an electrical control signal in response to a digital sound input; wherein the actuator is configured to receive the electrical control signal to exert a mechanical piezoelectric force on the diaphragm via the piezoelectric layer to move the diaphragm to create a sound wave.
摘要:
A sensor system having coupling structures is disclosed. The system includes an input coupling structure, an interaction region, and an output coupling structure. The input coupling structure is configured to receive emitted light at a selected coupling efficiency and may provide filtering of the emitted light for a selected wavelength. The interaction region is coupled to the input coupling structure and configured to interact the light from the input coupling structure with a specimen. The output coupling structure is coupled to the interaction region and configured to provide interacted light from the interaction region to the detector.
摘要:
A semiconductor device comprises a plurality of quantum structures comprising predominantly germanium. The plurality of quantum structures are formed on a first semiconductor layer structure. The quantum structures of the plurality of quantum structures have a lateral dimension of less than 15 nm and an area density of at least 8×1011 quantum structures per cm2. The plurality of quantum structures are configured to emit light with a light emission maximum at a wavelength of between 2 μm and 10 μm or to absorb light with a light absorption maximum at a wavelength of between 2 μm and 10 μm.
摘要:
A hole plate and a MEMS microphone arrangement are disclosed. In an embodiment a hole plate includes a substrate with a first main surface, a second main surface, and a lateral surface and a perforation structure formed within the substrate, the perforation structure having a plurality of through-holes through the substrate, wherein the through-holes and the lateral surface are a result of a simultaneous dry etching step.
摘要:
A method for structuring a substrate and a structured substrate are disclosed. In an embodiment a method includes providing a substrate with a first main surface and a second main surface, wherein the substrate is fixed to a carrier arrangement at the second main surface, performing a photolithography step at the first main surface of the substrate to mark a plurality of sites at the first main surface, the plurality of sites corresponding to future perforation structures and future kerf regions for a plurality of future individual semiconductor chips to be obtained from the substrate, and plasma etching the substrate at the plurality of sites until the carrier arrangement is reached, thus creating the perforation structures within the plurality of individual semiconductor chips and simultaneously separating the individual semiconductor chips along the kerf regions.
摘要:
In various embodiments, a method for manufacturing microphone structures is provided. The method may include: Providing a substrate having a front side and a back side, the backside facing away from the front side, and having an inner area and an outer area laterally surrounding the inner area, with the inner area comprising a plurality of microphone areas each microphone are being provided for one microphone of the plurality of microphones; Forming a plurality of layers for the plurality of microphones in the microphone areas on the front side of the substrate; Forming a recess from the backside of the substrate with the recess laterally overlapping the entire inner area; Forming a plurality of cavities into a bottom of the recess with each cavity of the plurality of cavities being formed in one of the microphone areas; Processing the layers to form the plurality of microphone structures, wherein each microphone structure comprises at least one layer of the plurality of layers and one cavity; and Separating the plurality of microphone structures from each other.
摘要:
Carbon layers with reduced hydrogen content may be deposited by plasma-enhanced chemical vapor deposition by selecting processing parameters accordingly. Such carbon layers may be subjected to high temperature processing without showing excessive shrinking.
摘要:
A sensor system having coupling structures is disclosed. The system includes an input coupling structure, an interaction region, and an output coupling structure. The input coupling structure is configured to receive emitted light at a selected coupling efficiency and may provide filtering of the emitted light for a selected wavelength. The interaction region is coupled to the input coupling structure and configured to interact the light from the input coupling structure with a specimen. The output coupling structure is coupled to the interaction region and configured to provide interacted light from the interaction region to the detector.
摘要:
A micromechanical structure includes a substrate and a functional structure arranged at the substrate. The functional structure has a functional region configured to deflect with respect to the substrate responsive to a force acting on the functional region. The functional structure includes a conductive base layer and a functional structure comprising a stiffening structure having a stiffening structure material arranged at the conductive base layer and only partially covering the conductive base layer at the functional region. The stiffening structure material includes a silicon material and at least a carbon material.