Vertical thin film transistor structures with localized gate dielectric

    公开(公告)号:US11139401B2

    公开(公告)日:2021-10-05

    申请号:US16435359

    申请日:2019-06-07

    Abstract: Transistor structures with a deposited channel semiconductor material may have a vertical structure that includes a gate dielectric material that is localized to a sidewall of a gate electrode material layer. With localized gate dielectric material threshold voltage variation across a plurality of vertical transistor structures, such as a NAND flash memory string, may be reduced. A via may be formed through a material stack, exposing a sidewall of the gate electrode material layer and sidewalls of the dielectric material layers. A sidewall of the gate electrode material layer may be recessed selectively from the sidewalls of the dielectric material layers. A gate dielectric material, such as a ferroelectric material, may be selectively deposited upon the recessed gate electrode material layer, for example at least partially backfilling the recess. A semiconductor material may be deposited on sidewalls of the dielectric material layers and on the localized gate dielectric material.

    IC including back-end-of-line (BEOL) transistors with crystalline channel material

    公开(公告)号:US11616057B2

    公开(公告)日:2023-03-28

    申请号:US16367144

    申请日:2019-03-27

    Abstract: IC device including back-end-of-line (BEOL) transistors with crystalline channel material. A BEOL crystalline seed may be formed over a dielectric layer that has been planarized over a front-end-of-line (FEOL) transistor level that employs a monocrystalline substrate semiconductor. The BEOL crystalline seed may be epitaxial to the substrate semiconductor, or may have crystallinity independent of that of the substrate semiconductor. The BEOL crystalline seed may comprise a first material having a higher melt temperature than a melt material formed over the seed and over the dielectric layer. Through rapid melt growth, the melt material may be heated to a temperature sufficient to transition from an as-deposited state to a more crystalline state that is derived from, and therefore associated with, the BEOL crystalline seed. A BEOL transistor may then be fabricated from the crystallized material.

    MULTI-LEVEL MAGNETIC TUNNEL JUNCTION (MTJ) DEVICES

    公开(公告)号:US20200005861A1

    公开(公告)日:2020-01-02

    申请号:US16022547

    申请日:2018-06-28

    Abstract: A MTJ device includes a free (storage) magnet and fixed (reference) magnet between first and second electrodes, and a programmable booster between the free magnet and one of the electrodes. The booster comprises a magnetic material layer. The booster may further comprise an interface layer that supports the formation of a skyrmion spin texture, or a stable ferromagnetic domain, within the magnetic material layer. A programming current between two circuit nodes may be employed to set a position of the skyrmion or magnetic domain within the magnetic material layer to be more proximal to, or more distal from, the free magnet. The position of the skyrmion or magnetic domain to the MTJ may modulate TMR ratio of the MTJ device. The TMR ratio modulation may be employed to discern more than two states of the MTJ device. Such a multi-level device may, for example, be employed to store 2 bits/cell.

Patent Agency Ranking