Contact resistance reduction employing germanium overlayer pre-contact metalization

    公开(公告)号:US11476344B2

    公开(公告)日:2022-10-18

    申请号:US17643742

    申请日:2021-12-10

    申请人: Intel Corporation

    摘要: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.

    Semiconductor fin design to mitigate fin collapse

    公开(公告)号:US11171057B2

    公开(公告)日:2021-11-09

    申请号:US16465490

    申请日:2016-12-30

    申请人: INTEL CORPORATION

    摘要: Fin-based transistor structures, such as finFET and nanowire transistor structures, are disclosed. The fins have a morphology including a wave pattern and/or one or more ridges and/or nodules which effectively mitigate fin collapse, by limiting the inter-fin contact during a fin collapse condition. Thus, while the fins may temporarily collapse during wet processing, the morphology allows the collapsed fins to recover back to their uncollapsed state upon drying. The fin morphology may be, for example, an undulating pattern having peaks and troughs (e., sine, triangle, or ramp waves). In such cases, the undulating patterns of neighboring fins are out of phase, such that inter-fin contact during fin collapse is limited to peak/trough contact. In other embodiments, one or more ridges or nodules (short ridges), depending on the length of the fin, effectively limit the amount of inter-fin contact during fin collapse, such that only the ridges/nodules contact the neighboring fin.