Abstract:
Methods and apparatuses relating to balanced transmittal of data are described. In one embodiment, an apparatus includes an encoder to encode input data into at least one data group with each data group having an equal number of a first level signal and a second, lower level signal to transmit the at least one data group over single conductors in parallel, and a decoder to decode the at least one data group into output data. In another embodiment, a method includes encoding input data with an encoder into at least one data group with each data group having an equal number of a first level signal and a second, lower level signal to transmit the at least one data group over single conductors in parallel, and decoding the at least one data group into output data with a decoder.
Abstract:
An interconnect topology is disclosed that includes a plurality of interconnections, each of which is coupled together using a via, where at least two of the vias are staggered with respect to each other. In one embodiment, the interconnect topology comprises a substrate, multiple signal traces routed through the substrate on multiple layers, and a plurality of vias, where each via couples a pair of the signal traces to form an interconnection between different ones of the multiple layers, and where a pair of vias comprise a first via to carry a positive differential signal via and a second via to carry a negative differential signal that are coupled to signal traces to form a differential signal pair. The differential first and second vias are staggered with respect to each other.
Abstract:
This disclosure relates generally to an electronic assembly and method having a first electrical connection point and a second electrical connection point and a differential interconnect coupling the first electrical connection point to the second electrical connection point, the differential interconnect including first and second transmission traces including a interior edges and a exterior edges opposite the interior edges, the second interior edge facing the first interior edge, and stub traces, each stub trace coupled to one of the first and second transmission traces and projecting from one of the first interior edge, the first exterior edge, the second interior edge, and the second exterior edge. A substantially equal number of stub traces project from the first exterior edge and the second exterior edge. At least twice as many stub traces project from the first and second exterior edges as project from the first and second interior edges.
Abstract:
This disclosure relates generally to an electronic assembly and method having a first electrical connection point and a second electrical connection point and a differential interconnect coupling the first electrical connection point to the second electrical connection point, the differential interconnect including first and second transmission traces including a interior edges and a exterior edges opposite the interior edges, the second interior edge facing the first interior edge, and stub traces, each stub trace coupled to one of the first and second transmission traces and projecting from one of the first interior edge, the first exterior edge, the second interior edge, and the second exterior edge. A substantially equal number of stub traces project from the first exterior edge and the second exterior edge. At least twice as many stub traces project from the first and second exterior edges as project from the first and second interior edges.
Abstract:
An interconnect topology is disclosed that includes a plurality of interconnections, each of which is coupled together using a via, where at least two of the vias are staggered with respect to each other. In one embodiment, the interconnect topology comprises a substrate, multiple signal traces routed through the substrate on multiple layers, and a plurality of vias, where each via couples a pair of the signal traces to form an interconnection between different ones of the multiple layers, and where a pair of vias comprise a first via to carry a positive differential signal via and a second via to carry a negative differential signal that are coupled to signal traces to form a differential signal pair. The differential first and second vias are staggered with respect to each other.
Abstract:
This disclosure relates generally to an electronic assembly and method having a first electrical connection point and a second electrical connection point and a differential interconnect coupling the first electrical connection point to the second electrical connection point, the differential interconnect including first and second transmission traces including a interior edges and a exterior edges opposite the interior edges, the second interior edge facing the first interior edge, and stub traces, each stub trace coupled to one of the first and second transmission traces and projecting from one of the first interior edge, the first exterior edge, the second interior edge, and the second exterior edge. A substantially equal number of stub traces project from the first exterior edge and the second exterior edge. At least twice as many stub traces project from the first and second exterior edges as project from the first and second interior edges.