Abstract:
Described is an apparatus for a voltage controlled nano-magnetic random number generator. The apparatus comprises: a free ferromagnetic layer; a fixed ferromagnetic layer positioned in a non-collinear direction relative to the free ferromagnet layer; and a first terminal coupled to the free ferromagnetic layer, the first terminal to provide a bias voltage to the free ferromagnetic layer. Described is also an integrated circuit comprising: a random number generator including a magnetic tunnel junction (MTJ) device with non-collinearly positioned free and fixed ferromagnetic layers; and a circuit to provide an adjustable bias voltage to the free ferromagnetic layer, the circuit to control variance of current generated by the random number generator.
Abstract:
A multilayer free magnetic layer structure for spin-based magnetic memory is provided herein. The multilayer free magnetic structure is employed in a magnetic tunnel junction (MTJ) and includes antiferromagnetically coupled magnetic layers. In some cases, the antiferromagnetic coupling is mediated by RKKY interaction with a Ru, Ir, Mo, Cu, or Rh spacer layer. In some cases, low damping magnetic materials, such as CoFeB, FeB, or CoFeBMo are used for the antiferromagnetically coupled magnetic layers. By employing the multilayer free magnetic structure for the MTJ as variously described herein, the critical or switching current can be significantly reduced compared to, for example, an MTJ employing a single-layer free magnetic layer. Thus, higher device efficiencies can be achieved. In some cases, the magnetic layers of the multilayer free magnetic structure are perpendicular magnets, which can be employed, for example, in perpendicular spin-orbit torque (pSOT) memory devices.
Abstract:
Embodiments herein describe techniques for a semi-conductor device comprising a channel having a first semiconductor material; a source contact coupled to the channel, comprising a first Heusler alloy; and a drain contact coupled to the channel, comprising a second Heusler alloy. The first Heusler alloy is lattice-matched to the first semiconductor material within a first predetermined threshold. A first Schottky barrier between the channel and the source contact, and a second Schottky barrier between the channel and the drain contact are negative, or smaller than another predetermined threshold. The source contact and the drain contact can be applied to a strained silicon transistor, an III-V transistor, a tunnel field-effect transistor, a dichalcogenide (MX2) transistor, and a junctionless nanowire transistor.
Abstract:
An apparatus is described that includes a resistive random access memory cell having a word line that is to receive a narrowed word line signal that limits an amount of time that an access transistor is on so as to limit the cell's high resistive state and/or the cell's low resistive state. Another apparatus is described that includes a resistive random access memory cell having SL and BL lines that are to receive respective signals having different voltage amplitudes to reduce source degeneration effects of the resistive random access memory cell's access transistor. Another apparatus is described that includes a resistive random access memory cell having a storage cell comprising a bottom-side OEL layer. Another apparatus is described that includes a resistive random access memory cell having a storage cell within a metal layer that resides between a pair of other metal layers where parallel SL and BL lines of the resistive random access memory cell respectively reside.
Abstract:
Described is an apparatus comprising: a first select-line; a second select-line; a bit-line; a first bit-cell including a resistive memory element and a transistor, the first bit-cell coupled to the first select-line and the bit-line; a buffer with an input coupled to the first select-line and an output coupled to the second select-line; and a second bit-cell including a resistive memory element and a transistor, the second bit-cell coupled to the second select-line and the bit-line. Described is a magnetic random access memory (MRAM) comprising: a plurality of rows, each row including: a plurality of bit-cells, each bit-cell having an MTJ device coupled to a transistor; and a plurality of buffers, each of which to buffer a select-line signal for a group of bit-cells among the plurality of bit-cells; and a plurality of bit-lines, each row sharing a single bit-line among the plurality of bit-cells in that row.
Abstract:
An embodiment includes a C-element logic gate implemented as a spin logic device that provides a compact and low-power implementation of asynchronous logic by implementing a C-element with spintronic technology. An embodiment includes a first nanopillar including a first contact and a first fixed magnetic layer; a second nanopillar including a second contact and a second fixed magnetic layer; and a third nanopillar including a third contact, a tunnel barrier, and a third fixed magnetic layer; wherein (a) the first, second, and third nanopillars are all formed over a free magnetic layer, and (b) the third fixed magnetic layer, the tunnel barrier, and the free magnetic layer form a magnetic tunnel junction (MTJ). Other embodiments are described herein.
Abstract:
Described is an apparatus 1T-1 Magnetic Tunnel Junction (MTJ) Spin Hall Magnetic Random Access Memory (MRAM) bit-cell and array, and method of forming such. The apparatus comprises: a select line; an interconnect with Spin Hall Effect (SHE) material, the interconnect coupled to a write bit line; a transistor coupled to the select line and the interconnect, the transistor controllable by a word line; and a MTJ device having a free magnetic layer coupled to the interconnect.