Abstract:
A MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, wherein the sensing reference plane is divided by a first and a second axis forming four quadrants on the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, and a pattern of sensing elements on the sensing reference plane to detect motion normal of the at least one proof mass relative to the sensing reference plane, wherein the pattern of sensing elements comprises at least three sensing elements in each of the four quadrants.
Abstract:
A system and method for providing a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a substrate, an anchor region coupled to the substrate, at least one support arm coupled to the anchor region, at least two guiding arms coupled to and moving relative to the at least one support arm, a plurality of sensing elements disposed on the at least two guiding arms to measure motion of the at least two guiding arms relative to the substrate, and a proof mass system comprising at least one mass coupled to each of the at least two guiding arms by a set of springs. The proof mass system is disposed outside the anchor region, the at least one support arm, the at least two guiding arms, the set of springs, and the plurality of sensing elements.
Abstract:
A MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, wherein the sensing reference plane is divided by a first and a second axis forming four quadrants on the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, and a pattern of sensing elements on the sensing reference plane to detect motion normal of the at least one proof mass relative to the sensing reference plane, wherein the pattern of sensing elements comprises at least three sensing elements in each of the four quadrants.
Abstract:
A MEMS system includes a proof mass, an anchor, an amplifier, first and second sense elements and their corresponding feedback elements. The proof mass moves responsive to a stimulus. The anchor coupled to the proof mass via a spring. The amplifier receives a proof mass signal from the proof mass and amplifies the signal to generate an output signal. The first sense element is connected between the proof mass and a first input signal and the second sense element is connected between the proof mass and a second input signal. The second input signal has a polarity opposite to the first input signal. The first feedback element is connected between the proof mass and the output signal and its charges change responsive to proof mass displacement. The second feedback element is connected between the proof mass and the output signal and its charges change in response to proof mass displacement.
Abstract:
A sensor is disclosed. The sensor includes a substrate and a mechanical structure. The mechanical structure includes at least two proof masses including a first proof mass and a second proof mass. The mechanical structure also includes a flexible coupling between the at least two proof masses and the substrate. The at least two proof masses move in an anti-phase direction normal to the plane of the substrate in response to acceleration of the sensor normal to the plane and move in anti-phase in a direction parallel to the plane of the substrate in response to an acceleration of the sensor parallel to the plane. The at least two proof masses move in a direction parallel to the plane of the substrate in response to an acceleration of the sensor parallel to the plane.
Abstract:
A MEMS sensor includes a sensing reference plane, an anchor, a proof mass, and sensing elements. The anchor is coupled to the sensing reference plane and to the proof mass that moves under an external excitation. The sensing elements detect motion normal to the sensing reference plane. A summation of a product of polarity for each sensing element, its area, and its distance to the anchor on one side of an axis line is unequal to a summation of a product of a polarity associated with each sensing element, its associated area, and its distance to the anchor on another side of the axis line. As such, external excitation creates an offset. The offset is substantially constant for curvature angles)(0°-360°) of the sensing reference plane. The offset is greater than zero and is less than a maximum offset for a MEMS sensor with perfect symmetry for its sensing elements.
Abstract:
A system and method for reducing offset in a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, a pattern of sensing elements coupled between the sensing reference plane and the at least one proof mass to detect motion normal to the sensing reference plane, wherein the pattern of sensing elements shares at least three axes of polarity anti-symmetry, and a signal processing circuit to combine the pattern of sensing elements thereby providing an output proportional to the external excitation. In a second aspect, the sensing reference plane is divided by two axes forming four quadrants on the sensing reference plane.
Abstract:
A MEMS sensor is disclosed. The MEMS sensor includes a MEMS structure and a substrate coupled to the MEMS structure. The substrate includes a layer of metal and a layer of dielectric material. The MEMS structure moves in response to an excitation. A first over-travel stop is formed on the substrate at a first distance from the MEMS structure. A second over-travel stop on the substrate at a second distance from the MEMS structure. At least one electrode on the substrate at a third distance from the MEMS structure. The first, second and third distances are all different.