摘要:
A system and method for electropolishing a conductive surface of a wafer using an electrolyte comprising an electrically resistive agent that modulates the conductivity of the electrolyte. The electrically resistive agent is a urea or a urea derivative. The electrolyte may also include a chelating agent a pH adjusting agent, and/or a surface film forming agent. The system includes a wafer carrier configured to hold the wafer, a polishing pad, and an electrode in proximity to the polishing pad. The wafer carrier may be configured to rotate or laterally move the wafer on the polishing surface of the polishing pad.
摘要:
A method of filling a conductive material in a three dimensional integration feature formed on a surface of a wafer is disclosed. The feature is optionally lined with dielectric and/or adhesion/barrier layers and then filled with a liquid mixture containing conductive precursor, such as a solution with dissolved ruthenium precursor or a dispersion or suspension with conductive particles (e.g., gold, silver, copper), and the substrate is rotated while the mixture is on its surface. Then, the liquid carrier is dried from the feature, leaving a conductive layer in the feature. These two steps are optionally repeated until the feature is filled up with the conductor. Then, the conductor is annealed in the feature, thereby forming a dense conductive plug in the feature.
摘要:
A method of conditioning an electropolished conductive layer of a substrate is disclosed, the conductive layer having impurities thereon. The conductive layer may be formed on a thin conductive film or barrier layer that coats one or more cavities formed on the substrate surface. The method comprises applying a first process solution onto the electropolished conductive layer to dissolve a portion thereof, and then applying a second process solution onto the conductive layer. The second process solution is preferably configured to charge and move the impurities away from the conductive layer. The substrate surface can then be rinsed to remove the first and second process solutions and the impurities.
摘要:
The present invention relates to methods and apparatus for plating a conductive material on a semiconductor substrate by rotating pad or blade type objects in close proximity to the substrate, thereby eliminating/reducing dishing and voids. This is achieved by providing pad or blade type objects mounted on cylindrical anodes or rollers and applying the conductive material to the substrate using the electrolyte solution disposed on or through the pads, or on the blades. In one embodiment of the invention, the pad or blade type objects are mounted on the cylindrical anodes and rotated about a first axis while the workpiece may be stationary or rotate about a second axis, and metal from the electrolyte solution is deposited on the workpiece when a potential difference is applied between the workpiece and the anode. In another embodiment of the present invention, the plating apparatus includes an anode plate spaced apart from the cathode workpiece. Upon application of power to the anode plate and the cathode workpiece, the electrolyte solution disposed in the plating apparatus is used to deposit the conductive material on the workpiece surface using cylindrical rollers having the pad or blade type objects.
摘要:
The present invention includes methods and apparatus therefrom for preparing thin films of doped semiconductors for radiation detector and photovoltaic applications, and particularly method and apparatus that increase dopants of alkali metals in Group IBIIIAVIA layers. In a particular aspect, the present invention includes a method of preparing a doped Group IBIIIAVIA absorber layer for a solar cell, with the absorber layer being formed by reaction, with a Group VIA material, of a metallic stack with a plurality of layers, in which each layer contains a concentration of an alkali metal selected from the group of Na, K and Li.
摘要:
An electrode assembly includes a distribution plate having a plurality of grooves that communicate with openings in an overlying polishing pad layer. The grooves include end openings that allow for draining of process solution, both during processing and subsequent cleaning/rinsing of the pad. Drainage occurs continually during processing, cleaning and rinsing, and so is constricted through the end openings relative to the grooves, to prevent wastage. The end openings are sufficiently large, however, to substantially completely drain fluids from the grooves between steps without delaying robotic motions.
摘要:
Methods of forming conductive layers over a substrate include contacting a barrier layer with an electrical contact and establishing a relative motion between the electrical contact and the barrier layer for a predetermined period of time, thereby electrodepositing conductive material from a process solution onto the barrier layer. The methods may be repeated to form an other conductive layer over the barrier layer.
摘要:
An electrochemical mechanical process for electroplating or electropolishing a conductive surface of a wafer is provided. The conductive surface of the wafer is touched by a polishing surface of a compressible pad while a process solution flows through the pad and a potential difference is maintained between the conductive surface and an electrode. The pressure between the polishing surface and a central region of the conductive surface is increased by applying a shaping process to either the conductive surface or the pad.
摘要:
The present invention relates to method and apparatus for preparing thin films of semiconductor films for radiation detector and photovoltaic applications. In one aspect, the present invention includes a series of chambers between the inlet and the outlet, with each chamber having a gap that allows a substrate to pass therethrough and which is temperature controlled, thereby allowing each chamber to maintain a different temperature, and the substrate to be annealed based upon a predetermined temperature profile by efficiently moving through the series of chambers. In another aspect, each of the chambers opens and closes, and creates a seal when in the closed position during which time annealing takes place within the gap of the chamber. In a further aspect, the present invention provides a method of forming a Group IBIIIAVIA compound layer on a surface of a flexible roll.
摘要:
Relatively large openings or features in integrated circuit metallization or packaging vias are filled by two plating or electrodeposition processes in sequence. The first electrodeposition process conformally lines the large, high aspect ratio features to define an inner cavity. The second electrodeposition process uses a different solution to bottom-up fill the inner cavity left by the first electrodeposition process. Conformality is typically induced by use of levelers during the first electrodeposition, while accelerators and suppressors may be used to promote bottom-up fill during the second electrodeposition, although either process may employ any of the three additives.