Abstract:
An infrared emitter, which utilizes a photonic bandgap (PBG) structure to produce electromagnetic emissions with a narrow band of wavelengths, includes a semiconductor material layer, a dielectric material layer overlaying the semiconductor material layer, and a metallic material layer having an inner side overlaying the dielectric material layer. The semiconductor material layer is capable of being coupled to an energy source for introducing energy to the semiconductor material layer. An array of holes are defined in the device in a periodic manner, wherein each hole extends at least partially through the metallic material layer. The three material layers are adapted to transfer energy from the semiconductor material layer to the outer side of the metallic material layer and emit electromagnetic energy in a narrow band of wavelengths from the outer side of the metallic material layer.
Abstract:
The present invention generally relates to the regulation of plant physiology, in particular to methods for inhibiting the ethylene response in plants or plant products, and has three embodiments. The first embodiment relates to methods of minimizing impurities capable of reversibly binding to plant ethylene receptor sites during the synthesis of cyclopropene and its derivatives such as methylcyclopropene, thereby avoiding the negative effects these impurities have on plants treated with cyclopropene and its derivatives. The second embodiment relates to complexes formed from molecular encapsulation agents such as cyclodextrin, and cyclopropene and its derivatives such as methylcyclopropene, in addition to cyclopentadiene and diazocyclopentadiene and their derivatives, thereby providing a convenient means for storing and transporting these compounds capable of inhibiting the ethylene response in plants, which are reactive gases and highly unstable because of oxidation and other potential reactions. The third embodiment relates to convenient methods of delivering to plants these compounds capable of inhibiting the ethylene response in the plants in order to extend their shelf life.
Abstract:
An insulating end cap for a cylindrical electrolysis cell the type comprising at least two tubular electrodes with a cylindrical membrane arranged co-axially between them, comprises a first annular section with first and second axial ends, having at its first axial end a circular seating or one end of an outer cylindrical electrode and at its second end a circular aperture, of smaller diameter than the circular seating and co-axial therewith, to accommodate one end of the membrane. A second annular section of the end cap is detachably secured to the first and has a central circular aperture of smaller diameter than the central aperture of the first section and co-axial therewith, to accommodate one end of the inner cylindrical electrode. The two part construction of the end cap facilitates the assembly of the cell, and reduces the likelihood of breakage of the fragile ceramic membrane.
Abstract:
A drywall-joint fixture has a drywall-joint cover (1, 33, 37, 42) that can be attached to a drywall arch, wall flat or other drywall structure after a first sheet (3) and a second sheet (4) of drywall of the drywall joint are positioned on wall framework (5, 35, 39) of a building. A paper face (49) that is resistant to sanding is positioned on the drywall-joint cover. The drywall-joint cover includes a first side (6), a second side (7) and an attachment flange (8). The attachment flange is extended orthogonally from an inside surface of either the first side or the second side and is longer than a side opposite from which it is extended for receiving fastener shanks (12) that are stuck through sheets and into a wall framework. A selection of shapes are provided for differing wall structures. A method includes using the attachment flange to maintain the drywall-joint cover in place.
Abstract:
An insulating end cap for a cylindrical electrolysis cell the type comprising at least two tubular electrodes with a cylindrical membrane arranged co-axially between them, comprises a first annular section with first and second axial ends, having at its first axial end a circular seating or one end of an outer cylindrical electrode and at its second end a circular aperture, of smaller diameter than the circular seating and co-axial therewith, to accommodate one end of the membrane. A second annular section of the end cap is detachably secured to the first and has a central circular aperture of smaller diameter than the central aperture of the first section and co-axial therewith, to accommodate one end of the inner cylindrical electrode. The two part construction of the end cap facilitates the assembly of the cell, and reduces the likelihood of breakage of the fragile ceramic membrane.
Abstract:
An insulating end cap for a cylindrical electrolysis cell the type comprising at least two tubular electrodes with a cylindrical membrane arranged co-axially between them, comprises a first annular section with first and second axial ends, having at its first axial end a circular seating or one end of an outer cylindrical electrode and at its second end a circular aperture, of smaller diameter than the circular seating and co-axial therewith, to accommodate one end of the membrane. A second annular section of the end cap is detachably secured to the first and has a central circular aperture of smaller diameter than the central aperture of the first section and co-axial therewith, to accommodate one end of the inner cylindrical electrode. The two part construction of the end cap facilitates the assembly of the cell, and reduces the likelihood of breakage of the fragile ceramic membrane.
Abstract:
A blackbody radiation device (110) includes a planar filament emission element (102) and a planar detector (104) for respectively producing and detecting radiation having width dl/l less than about 0.1 to test a sample gas, where l is the wavelength of the radiation; a reflector (108); a window (W); an electrical control (118); and a data output element (116).
Abstract:
An infrared emitter, which utilizes a photonic crystal (PC) structure to produce electromagnetic emissions with a narrow band of wavelengths, includes a semiconductor material layer, a dielectric material layer overlaying the semiconductor material layer, and a metallic material layer having an inner side overlaying the dielectric material layer. The semiconductor material layer is capable of being coupled to an energy source for introducing energy to the semiconductor material layer. An array of surface features are defined in the device in a periodic manner or quasi-periodic. The emitter device is adapted to emit electromagnetic energy having spectral characteristics determined by parameters of the periodically distributed surface features, the parameters including shape, size, depth, distribution geometry, periodicity, material properties and defects.
Abstract:
An absorption spectroscopy apparatus including a sample cell having a central axis, and a side wall coaxially positioned about the axis. The side wall defines a generally circular cross-section of the cell as taken along a plane extending perpendicular to the axis, wherein the generally circular cross-section of the sample cell has an average radius. The side wall includes a plurality of light reflective segments arrayed about the axis, wherein each reflective segment has a cross-section taken along a plane extending perpendicular to the axis of the cell that is concave with respect to the axis. The concave cross-section of each segment has an average radius that is unequal to the average radius of the generally circular cross-section of the sample cell. Among other aspects and advantages, the apparatus of the present disclosure is able to use incoherent, non-collimated light sources while maintaining high optical throughput efficiencies.
Abstract:
In a first aspect of the present invention, there is provided a method of treating ornamental plants comprising contacting said plants with a liquid composition comprising of one or more cyclopropene compound, wherein the concentration of the total of all of said one or more cyclopropene compound is 0.3 to 300 milligrams of cyclopropene compound per liter of said liquid composition.