Abstract:
A bi-directional transceiver comprises a housing, a flange coupled to the housing, and only one LC receptacle coupled to the housing. A width of the housing is less than 9.2 mm, and a width of the flange is less than 9.5 mm.
Abstract:
A pin header for a transceiver comprises a frame comprising a rectangle that is indented on opposing sides of the rectangle, a first row of pins extending through the frame at a first angle to the rectangle, and a second row of pins extending through the frame at a second angle to the rectangle. The first row of pins is along a first side of the frame between the indented opposing sides and the second row of pins is along a second side of the frame between the indented opposing sides.
Abstract:
A transceiver including a transmitter, a receiver, a first printed circuit board assembly, and a second printed circuit board assembly. The transmitter is configured to convert electrical signals to fiber optic signals. The receiver is configured to convert fiber optic signals to electrical signals. The first printed circuit board assembly is electrically coupled with the transmitter and configured to be electrically coupled with a host system via a first plurality of host interface pins. The second printed circuit board assembly is electrically coupled with the receiver and configured to be electrically coupled with the host system via a second plurality of host interface pins.
Abstract:
Systems and methods to manage workloads and hardware resources in a data center or cloud. In one embodiment, a method includes a data center having a plurality of servers in a network. The data center provides a virtual machine for each of a plurality of users, each virtual machine to use a portion of hardware resources of the data center. The hardware resources include storage and processing resources distributed onto each of the plurality of servers. The method further includes sending messages amongst the servers, some of the messages being sent from a server including status information regarding a hardware resource utilization status of that server. The method further includes detecting a request from the virtual machine to handle a workload requiring increased use of the hardware resources, and provisioning the servers to temporarily allocate additional resources to the virtual machine, wherein the provisioning is based on status information provided by one or more of the messages.
Abstract:
Systems, methods and devices for providing stabilization between first and second vertebrae are provided. More particularly, in one form a system includes an implant configured to be positioned in a disc space between the first and second vertebrae and a freestanding plate for engagement with extradiscal surfaces of the first and second vertebrae. The system also includes an insertion instrument with an engaging portion configured to releasably engage with the implant and the plate such that the implant and plate can be positioned together relative to the first and second vertebrae. In one aspect, an angular orientation of the implant relative to the plate is adjustable when the implant and the plate are engaged by the instrument. In this or another aspect, the implant and plate are held in a contiguous relationship when engaged by the instrument. However, different forms and applications are also envisioned.
Abstract:
Systems and methods to manage workloads and hardware resources in a data center or cloud. In one embodiment, a method includes a data center having a plurality of servers in a network. The data center provides a virtual machine for each of a plurality of users, each virtual machine to use a portion of hardware resources of the data center. The hardware resources include storage and processing resources distributed onto each of the plurality of servers. The method further includes sending messages amongst the servers, some of the messages being sent from a server including status information regarding a hardware resource utilization status of that server. The method further includes detecting a request from the virtual machine to handle a workload requiring increased use of the hardware resources, and provisioning the servers to temporarily allocate additional resources to the virtual machine, wherein the provisioning is based on status information provided by one or more of the messages.
Abstract:
Systems and methods to manage workloads and hardware resources in a data center or cloud. In one embodiment, a method includes a data center having a plurality of servers in a network. The data center provides a virtual machine for each of a plurality of users, each virtual machine to use a portion of hardware resources of the data center. The hardware resources include storage and processing resources distributed onto each of the plurality of servers. The method further includes sending messages amongst the servers, some of the messages being sent from a server including status information regarding a hardware resource utilization status of that server. The method further includes detecting a request from the virtual machine to handle a workload requiring increased use of the hardware resources, and provisioning the servers to temporarily allocate additional resources to the virtual machine, wherein the provisioning is based on status information provided by one or more of the messages.
Abstract:
Systems, methods, and media for transparently optimizing a workload of a containment abstraction are provided herein. Methods may include monitoring a workload of the containment abstraction, the containment abstraction being at least partially hardware bound, the workload corresponding to resource utilization of the containment abstraction, converting the containment abstraction from being at least partially hardware bound to being entirely central processing unit (CPU) bound by placing the containment abstraction in a memory store, based upon the workload, and allocating the workload of the containment abstraction across at least a portion of a data center to optimize the workload of the containment abstraction.
Abstract:
An exercise device providing a fore and aft horizontal component of striding motion that is dynamically user-defined, while providing a vertical component of the motion that is maintained on a predetermined vertically reciprocating path in some embodiments. The exercise device guides the user's foot in a pseudo-elliptical stride path, while providing a dynamically variable stride length that allows the user to move with a natural stride length. The exercise device allows tall and short users to extend or curtail the stride length to match their natural stride lengths. The length of the reciprocating path is dynamically adjusted during the exercise operation without equipment adjustments by changes in the length of the stride input by the user at a pair of foot engagement pads disposed on laterally spaced apart foot support members.
Abstract:
Electronic circuits in a register associated with a commodity usage meter capture energy from a meter reading device when the device is coupled to the register (e.g., either electrically or inductively coupled) for the purpose of reading metered quantity data from the register. Electrical charge obtained from the reading device may be stored in a high-capacity storage capacitor. When the capacitor is sufficiently charged, it provides power to at least part of the register circuits, such as a controller, for at least the duration of the communication session with the reading device. In some embodiments, the capacitor may additionally supply sufficient power to operate the register until a subsequent reading device coupling.