Abstract:
Apparatus and methods are disclosed for treating a sample by selectively controlling sonic energy and/or selectively controlling the location of the sample relative to the sonic energy.
Abstract:
Acoustic energy is used to control motion in a fluid. According to one embodiment, the invention directs acoustic energy at selected naturally occurring nucleation features to control motion in the fluid. In another embodiment, the invention provides focussed or unfocussed acoustic energy to selectively placed nucleation features to control fluid motion. According to one embodiment, the invention includes an acoustic source, a controller for controlling operation of the acoustic source, and one or more nucleation features located proximate to or in the fluid to be controlled.
Abstract:
This invention relates to systems and methods for applying acoustic energy to a sample. According to one aspect of the invention, a system comprises a housing, a chamber for receiving the sample, an acoustic energy source for providing a focused acoustic field to the sample according to a treatment protocol, a processor for determining the treatment protocol, a sensor for detecting information about the sample, and a user interface for communicating with a user.
Abstract:
Apparatus and methods are disclosed for treating a sample by selectively controlling sonic energy and/or selectively controlling the location of the sample relative to the sonic energy.
Abstract:
Devices and methods are described for homogenization, processing, detection, and analysis of biological samples such as insects, fungi, bacteria, and plant and animal tissues. Multiple chambers in these devices permit different processing functions to be carried out at each stage, such that the resulting homogenized product can be further processed, purified, analyzed, and/or biomolecules such as metabolites, proteins and nucleic acids, or pharmaceutical products can be detected. The device can be used in a hydrostatic pressure apparatus, in which different activities, i.e. incubations, addition or renewal of reagent, and generation and detection of signal can be carried out in the appropriate chamber. The method improves the preservation of biomolecules from chemical and enzymatic degradation relative to conventional means. Additionally, this method enables automated sample preparation and analytical processes.
Abstract:
Methods for cell lysis and purification of biological materials, involving subjecting a sample to high pressure. Also featured is an apparatus for practicing the methods.