摘要:
Systems and methods for aligning wafers within wafer processing equipment. In a first embodiment, a wafer alignment nozzle comprises a fixed cylindrical member. A moveable cylindrical member is disposed with the fixed cylindrical member in a sliding fit. The moveable cylindrical member comprises a plurality of angled fluid orifices for directing a plurality of streams of the fluid onto a surface of the wafer.
摘要:
Systems and methods for aligning wafers within wafer processing equipment. In a first embodiment, a wafer alignment nozzle comprises a fixed cylindrical member. A moveable cylindrical member is disposed with the fixed cylindrical member in a sliding fit. The moveable cylindrical member comprises a plurality of angled fluid orifices for directing a plurality of streams of the fluid onto a surface of the wafer.
摘要:
Systems and methods for aligning wafers. A first method provides for placing a wafer carrier comprising a mis-aligned wafer into an acceptance port. A wafer alignment fixture is moved relative to the wafer carrier and perpendicular to the plane of the mis-aligned wafer. The wafer alignment fixture comprises a spring action member. A force from said spring action member is exerted upon the mis-aligned wafer to achieve a desirable alignment of the mis-aligned wafer within the wafer carrier.
摘要:
A method for chemical mechanical polishing (CMP) wafers having high aspect ratio surface topography. A wafer is positioned on a plate. A polishing pad is coupled to a platen. A polishing solution (e.g., slurry) is added between the polishing pad and the wafer. CMP is performed on the wafer by creating a relative movement between the polishing pad and the wafer. The polishing pad removes substantially all residual material from the channels. To accomplish this, the polishing pad has a compressibility of at least 5% at a polishing pressure of about 4 psi.
摘要:
A method for chemical mechanical polishing (CMP) wafers having high aspect ratio surface topography. A wafer is positioned on a plate. A polishing pad is coupled to a platen. A polishing solution (e.g., slurry) is added between the polishing pad and the wafer. CMP is performed on the wafer by creating a relative movement between the polishing pad and the wafer. The polishing pad removes substantially all residual material from the channels. To accomplish this, the polishing pad has a compressibility of at least 5% at a polishing pressure of about 4 psi.
摘要:
In one method and embodiment of the present invention, at least one coil layer is formed in a write head, using a two-slurry step of copper damascene chemical mechanical polishing method with a first slurry step removing the undesirable copper that is on top of the tantalum barrier layer and on top of the trenches and a second slurry step removing the remainder of the undesirable copper, the tantalum barrier layer, the silicon dioxide hard mask layer, the hard baked photoresist layer, the magnetic alloy such as NiFe, CoFe, or CoNiFe, and alumina insulating layer for better thin film magnetic head performances.
摘要:
In one method and embodiment of the present invention, at least one coil layer is formed in a write head, using a two-slurry step of copper damascene chemical mechanical polishing method with a first slurry step removing the undesirable copper that is on top of the tantalum barrier layer and on top of the trenches and a second slurry step removing the remainder of the undesirable copper, the tantalum barrier layer, the silicon dioxide hard mask layer, the hard baked photoresist layer, the magnetic alloy such as NiFe, CoFe, or CoNiFe, and alumina insulating layer for better thin film magnetic head performances.
摘要:
Methods for providing run to run process control using a dynamic tuner are provided. Once such method includes receiving a data point for a process output parameter, determining whether the data point is within a desired range for the process output parameter, setting, when the data point is within the desired range, a dynamic lambda value equal to a preselected base lambda value, setting, when the data point is not within the desired range, the dynamic lambda value equal to a value based on the preselected base lambda value, a degree of difference between the data point and a target for the process output parameter, and a scale factor, calculating an exponentially weighted moving average using the dynamic lambda value, and adjusting the process control parameter in accordance with the exponentially weighted moving average.
摘要:
Methods for providing asymmetric control of process parameters are described. One such method includes receiving a data point for the process parameter relative to the wafer, selecting a first value for a process weighting factor when the data point is consistent with a first criteria, selecting a second value for the process weighting factor when the data point is consistent with a second criteria, where the second value is not equal to the first value, calculating an exponential weighted moving average of the process parameter based on the data point and the process weighting factor, updating the process parameter with the exponential weighted moving average, and using the updated process parameter to control the process and thereby treat the wafer. The methods can use one or more weighting factor switch limits to define different areas of risk associated with a target for the process parameter.
摘要:
Flexible setter powder deposition sheets containing setter powders were developed for sintering of ceramic articles including tapes by an economical, fast and simple method. The sheets provide for deposition of a thin and uniform layer of setter powders on a green ceramic article after burnout of a binder in the sheet. Because of high strength and low burnout temperature, hydroxypropyl methylcellulose binder is preferred for production of these sheets. Tape cast sheets with low solids loading can be obtained by optimizing the wetting behavior of aqueous slurries on tape carrier. Setter, powder deposition sheets are of particular benefit in processing of thin ceramic tapes, particularly for processing of piezoelectric ceramic tapes. Tapes can be processed in a sandwich formed by layering setter powder deposition sheets between tapes and cover plates employed to maintain tape flatness and to reduce evaporation of volatile components of the ceramic.