摘要:
Improved p-channel FETs and optoelectronic device make use of reduced hole effective mass achieved with quantum confinement. The devices include multiple one-dimensional p-channel FETs which have electrically induced and controllable one dimensional p-type semiconductor wires; square well two-dimensional p-channel FETs; and laser diodes and light emitting diodes which use one dimensional p-type semiconductor wires.
摘要:
Improved p-channel FETs and optoelectronic devices make use of reduced hole effective mass achieved with quantum confinement. The devices include multiple one-dimensional p-channel FETs which have electrically induced and controllable one dimensional p-type semiconductor wires; square well two-dimensional p-channel FETs; and laser diodes and light emitting diodes which use one dimensional p-type semiconductor wires.
摘要:
A semiconductor laser device is provided in which an active layer is sandwiched between and upper and lower cladding layer, the lower cladding layer being situated on a semi-insulating substrate. The upper cladding layer includes a raised ridge section running from end to end between the facets or end surfaces of the laser cavity. The ridge section aids in optical confinement. A p+ contact region and an n+ contact region are formed extending though the upper cladding layer, the active region and the lower cladding layer on both sides of the ridge to provide lateral injection of charge carriers into the active region of the laser.
摘要:
A hot electron transistor includes two base regions between the emitter and collector, with the first and second bases separated by a base-base barrier. The emitter injects high energy electrons across an emitter barrier into the first base, which acts as an electron gun to focus and accelerate the electrons and inject them across the base-base barrier into the second base. An input signal is applied to the second base, to modulate the flow of electrons from the second base across a collector barrier and into the collector.
摘要:
A bipolar transistor has a barrier layer interposed between its base and its emitter. The barrier layer is formed of a different, wider band gap, semiconductor material than the base and the emitter and has the same conductivity type as the emitter. The barrier layer exhibits a large difference in the effective electron mass and the effective whole mass, and presents a small barrier to majority carriers. The tunneling emitter bipolar transistor exhibits a comparable current gain while having better temperature stability, less light sensitivity, and a much lower emitter resistance (leading to a much higher cut-off frequency) than conventional heterojunction bipolar transistors.
摘要:
Optical gratings that perform a number of functions at various wavelengths are formed by various methods that preserve spectral information within a wavelength band, the functions including: coupling radiation from one waveguide to another, controllable gratings that operate on different wavelengths in response to external control signals.
摘要:
Optical gratings that perform a number of functions at various wavelengths are formed by various methods that preserve spectral information within a wavelength band, the functions including: coupling radiation from one waveguide to another, controllable gratings that operate on different wavelengths in response to external control signals.
摘要:
Optical gratings that perform a number of functions at various wavelengths are formed by various methods that preserve spectral information within a wavelength band, the functions including: coupling radiation from one waveguide to another, controllable gratings that operate on different wavelengths in response to external control signals.
摘要:
A semiconductor laser device having a body with opposed facets and including an active region with aluminum diffused into the active region along the facets thereof. Adding aluminum to the portions of the active region along the facets increases the bandgap of the active region along the facets and provides a semiconductor laser device having an increased catastrophic optical damage (COD) level. The semiconductor laser device is produced by depositing a thin film of aluminum on the facets of the semiconductor laser device and then heat treating to cause diffusion of the aluminum film or phosphorus into the body of the semiconductor laser device along the facets thereof, thereby changing the composition of the semiconductor laser device body along the facets. Alternatively, phosphorus may be diffused into the body of the semiconductor laser device along the facets thereof.
摘要:
There is provided a semiconductor laser device capable of emitting a laser beam having stable transverse modes. A ridge type semiconductor laser device comprises an upper clad layer 15 left on its active layer to a thickness (d) between 0.25 and 0.50 m in order to ensure a stable production of fundamental transverse modes for laser operation and a rib-shaped clad layer 16 having a bottom width (W) between 2.0 .mu.m and 3.5 .mu.m and projecting from the upper clad layer in juxtaposition with the light emitting region of the active layer 13. When d and W are found within the respective ranges, the device emits a laser beam having stable transverse modes.