摘要:
A device structure and method for forming an interconnect structure in a magnetic random access memory (MRAM) device. In an exemplary embodiment, the method includes defining a magnetic stack layer on a lower metallization level, the magnetic stack layer including a non-ferromagnetic layer disposed between a pair of ferromagnetic layers. A conductive hardmask is defined over the magnetic stack layer, and selected portions of the hardmask and the magnetic stack layer, are then removed, thereby creating an array of magnetic tunnel junction (MTJ) stacks. The MTJ stacks include remaining portions of the magnetic stack layer and the hardmask, wherein the hardmask forms a self aligning contact between the magnetic stack layer and an upper metallization level subsequently formed above the MTJ stacks.
摘要:
A method for forming interconnect structures in a magnetic random access memory (MRAM) device includes defining an array of magnetic tunnel junction (MTJ) stacks over a lower metallization level. A encapsulating dielectric layer is formed over the array of MTJ stacks and the lower metallization level. Then, a via opening is defined in the encapsulating dielectric layer, and a planar interlevel dielectric (ILD) layer is deposited over the encapsulating dielectric layer and within the via opening. Openings are then formed within ILD layer, over the array of MTJ stacks and the via opening.
摘要:
A device structure and method for forming an interconnect structure in a magnetic random access memory (MRAM) device. In an exemplary embodiment, the method includes defining a magnetic stack layer on a lower metallization level, the magnetic stack layer including a non-ferromagnetic layer disposed between a pair of ferromagnetic layers. A conductive hardmask is defined over the magnetic stack layer, and selected portions of the hardmask and the magnetic stack layer, are then removed, thereby creating an array of magnetic tunnel junction (MTJ) stacks. The MTJ stacks include remaining portions of the magnetic stack layer and the hardmask, wherein the hardmask forms a self aligning contact between the magnetic stack layer and an upper metallization level subsequently formed above the MTJ stacks.
摘要:
A transistor which can in particular be used in memory cells of a Dynamic Random Access Memory a memory cell and a method of manufacturing a transistor is disclosed. In one embodiment the transistor is a dual-fin field effect transistor. The transistor includes a first and a second source/drain regions, a channel connecting the first and second source/drain regions, a gate electrode for controlling an electrical current flowing between the first and second source/drain regions. The gate electrode is insulated from the channel by a gate dielectric, wherein the gate electrode is disposed in a gate groove extending in the substrate surface so that the channel comprises two fin-like channel portions extending between the first and second source/drain regions in a cross-sectional view taken perpendicularly to a line connecting the first and the second source/drain regions, the gate electrode delimiting each of the fin-like channel portions at one side thereof.
摘要:
A method of providing dummy fill structures to meet the strict requirements for planarizing MRAM (Magnetic Random Access Memory) and other semiconductor devices to gain silicon floor space and allow maximum use of wiring levels. The method deposits a sacrificial or dummy layer of dielectric material such as SiO2 to form dummy fill structures prior to the planarization steps. The insulative dummy fill structures allow the use of less precise lithography and etching methods. The dummy fill structures provide support during the CMP process that planarizes the active devices prior to depositing another layer of SiO2 and etching lines of metallization. Since the dummy structures are made of a dielectric rather than conductive materials, the risk of shorts between levels of metallization and between active devices and lines of metallization is reduced.
摘要:
A method of manufacturing a transistor. In one embodiment, the method includes forming a gate electrode by defining a gate groove in the substrate. A plate-like portion is defined in each of the trenches at a position adjacent to the groove so that the two plate-like portions will be connected with the groove and the groove is disposed between two plate-like portions. In one embodiment, the two plate-like portions are defined by an etching process which selectively etches the isolating material of the isolation trenches with respect to the semiconductor substrate material. A gate insulating material is provided at an interface between the active area and the groove and the interface between the active area and the plate-like portions, and a gate electrode material is deposited so as to fill the groove and the two plate-like portions.
摘要:
To integrate a capacitor device (40) into the region of a semiconductor memory device with a particularly small number of process steps, a lower electrode device (43) and an upper electrode device (44) of the capacitor device (40) are provided to be formed directly underneath or directly above the material region (30) which has the memory elements (20), in such a way that as a result at least a part of the material region (30) which has the memory elements (20) functions at least as part of the respective dielectric (45) between the electrodes devices (43, 44).
摘要:
A method of manufacturing a resistive semiconductor memory device (100), comprising depositing an insulating layer (132) over a workpiece (30), and defining a pattern for a plurality of alignment marks (128) and a plurality of conductive lines (112) within the insulating layer (132). A conductive material is deposited over the wafer to fill the alignment mark (128) and conductive line (112) patterns. The insulating layer (132) top surface is chemically-mechanically polished to remove excess conductive material from the insulating layer (132) and form conductive lines (112), while leaving conductive material remaining within the alignment marks (128). A masking layer (140) is formed over the conductive lines (112), and at least a portion of the conductive material is removed from within the alignment marks (128). The alignment marks (128) are used for alignment of subsequently deposited layers of the resistive memory device (100).
摘要:
A method of manufacturing a transistor is disclosed. The method includes forming a first and a second source/drain regions, a channel connecting the first and the second source/drain regions and a gate electrode for controlling the conductivity of the channel. The gate electrode is formed by defining a gate groove in the substrate, and defining a pocket in each of the isolation trenches at a position adjacent to the groove so that the two pockets will be connected with the groove and the groove is disposed between the two pockets. A gate insulating material is provided at an interface between the active area and the groove and at an interface between the active area and the pockets. A gate electrode material is deposited so as to fill the groove and the two pockets.
摘要:
One aspect of the invention relates to a semiconductor arrangement having at least one nonvolatile memory cell which has a first electrode comprising at least two layers; and having an organic material, the organic material forming a compound with that layer of the first electrode which is in direct contact. One aspect of the invention furthermore relates to a method for producing the nonvolatile memory cell, a semiconductor arrangement having a plurality of memory cells according to the invention, and a method for producing the same.