摘要:
A method of qualifying a diffraction grating comprises performing plural measurements by illuminating a region of the grating with a beam of measuring light and detecting an intensity of measuring light diffracted by the grating into a 0th diffraction order. A wavelength of the measuring light or a polarization of the measuring light or an angle of incidence of the measuring light onto the diffraction grating is varied between subsequent measurements. A shape parameter of diffracting elements forming the grating comprises a pitch, height or width of structural features of the diffracting elements. The shape parameter is advantageously used in analyzing interferometric measurements performed on optical surfaces during manufacture of optical elements of a high accuracy.
摘要:
A method of manufacturing an optical element (5) comprises testing an optical surface (3) of the optical element, using an interferometer 1a directing measuring light (23a) onto the optical surface wherein the measuring light traverses two successive holograms (44, 48) disposed in the beam path of the measuring light upstream of the optical surface.
摘要:
A projection objective for microlithography includes at least one optical assembly with optical elements which are disposed between an object plane and an image plane. The optical assembly includes at least one optical terminal element, which is disposed close to the image plane. A first immersion liquid is disposed on the image oriented surface of the optical terminal element. A second immersion liquid is disposed on the object oriented surface of the optical terminal element. The object oriented surface includes a first surface section for the imaging light to enter into the terminal element, and the image oriented surface includes a second surface portion for the imaging light to exit from the terminal element.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
A projection exposure tool for microlithography for imaging mask structures of an image-providing substrate onto a substrate to be structured includes a measuring apparatus configured to determine a relative position of measurement structures disposed on a surface of one of the substrates in relation to one another in at least one lateral direction with respect to the substrate surface and to thereby simultaneously measure a number of measurement structures disposed laterally offset in relation to one another.
摘要:
A projection objective for microlithography includes at least one optical assembly with optical elements which are disposed between an object plane and an image plane. The optical assembly includes at least one optical terminal element, which is disposed close to the image plane. A first immersion liquid is disposed on the image oriented surface of the optical terminal element. A second immersion liquid is disposed on the object oriented surface of the optical terminal element. The object oriented surface includes a first surface section for the imaging light to enter into the terminal element, and the image oriented surface includes a second surface portion for the imaging light to exit from the terminal element.
摘要:
A method for calibrating an apparatus for the position measurement of measurement structures on a lithography mask comprises the following steps: qualifying a calibration mask comprising diffractive structures arranged thereon by determining positions of the diffractive structures with respect to one another by means of interferometric measurement, determining positions of measurement structures arranged on the calibration mask with respect to one another by means of the apparatus, and calibrating the apparatus by means of the positions determined for the measurement structures and also the positions determined for the diffractive structures.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
A mirror (M) of a projection exposure apparatus for microlithography configured for structured exposure of a light-sensitive material and a method for producing a mirror (M). The mirror (M) has a substrate body (B), a first mirror surface (S) and a second mirror surface (S′). The first mirror surface (S) is formed on a first side (VS) of the substrate body (B). The second mirror surface (S′) is formed on a second side (RS) of the substrate body (B), the second side being different from the first side of the substrate body (B). The mirror (M) may be embodied, in particular, such that the substrate body (B) is produced from a glass ceramic material.