摘要:
The invention relates to methods of dynamic chemical imaging, including methods of cellular imaging. The method comprises illuminating at least a portion of a cell with substantially monochromatic light and assessing Raman-shifted light scattered from the illuminated portion at a plurality of discrete times. The Raman-shifted light can be assessed at a plurality of Raman shift (RS) values at each of the discrete times, and the RS values can be selected to be characteristic of a pre-selected component at each of the discrete times. Multivariate analysis of Raman spectral features of the images thus obtained can yield the location and chemical identity of components in the field of view. This information can be combined or overlaid with other spectral data (e.g., a visible microscopic image) obtained from the field of view.
摘要:
The disclosure generally relates to a multimode imaging apparatus for simultaneously obtaining multiple wavelength-discriminative spectral images of a sample. In one embodiment, the apparatus includes an image selector having a rotator assembly, the rotator assembly housing a first plurality of optical components, the image selector adapted to receive a illuminating photons having a first wavelength and direct the illuminating photons to the sample, the image selector adapted to receive illuminating photons interacted with the sample and selectively direct said interacted photons to one of a plurality of detection sources; a microscope turret housing a second plurality of components, the microscope turret adapted to receive illuminating photons having a second wavelength and direct the photons to the sample; the microscopic turret adapted to receive illuminating photons interacted with the sample and selectively direct said interacted photons to one of a plurality of detection sources; wherein substantially all of the interacted photons are selectively directed one of a plurality of detection sources to form multiple wavelength discriminative spectral images of the sample simultaneously.
摘要:
The disclosure relates to a portable and/or handheld bioagent detector and methodology described herein that is based in part on advanced Raman Chemical Imaging (“RCI”) technology. According to one embodiment of the present disclosure, the detection system may include a fiber array spectral translator (“FAST”) and may also include a probe which may include a complementary metal oxide semiconductor (CMOS) camera. The probe alleviates the need to place the main instrument close to an unconfined release of a potentially hazardous material and facilitates analysis of a sample that is situated in a hard-to-reach location while minimizing contamination of the detector and operator.
摘要:
The present disclosure describes methods and systems that combine Raman spectroscopy performed in a manner that utilizes one or more of widefield illumination, simultaneous multipoint Raman spectral acquisition, and spectral unmixing for the purpose of high throughput polymorph screening. Features of this methodology include: (a) high throughput polymorph screening to reduce crystal orientation effects on Raman spectra; (b) in-well multi-polymorph screening using increased statistical sampling; and (c) multipoint spectral sampling to enable spectral unmixing.
摘要:
An ion implanted semiconductor surface is illuminated with a flood illumination of monochromatic radiation, and an image of the surface is taken using light which has been Raman scattered. The illumination and imaging system are calibrated by flood illuminating a uniformly Raman scattering surface.
摘要:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
摘要:
A system and method for depositing a sample of a threat agent is deposited onto a substrate. The threat agent is identified substantially coincident in time with the depositing of the sample of the threat agent onto the substrate.
摘要:
A system and method for depositing a sample of a threat agent is deposited onto a substrate. A first optical collection device collects at least one of the following: elastic scattered light produced by the threat agent, and Raman scattered light produced by the threat agent. A second optical collection device collects Raman scattered light produced by the threat agent, wherein the second optical collection device comprises a two dimensional non-linear array of optical fibers drawn into a one dimensional fiber stack that converts a non-linear field of view into a linear field of view, wherein the one dimensional fiber stack is coupled to an entrance slit of a Raman imaging spectrometer. The threat agent deposited on the substrate is identified.
摘要:
Pathogenic microorganisms are detected in a wide field of view and classified by Raman light scattered light from these organisms together with digital pattern recognition of their spectral patterns.
摘要:
System and method for differentiating tissue margins in a biological sample using pulsed laser excitation and time-gated detection. A region containing a biological tissue is irradiated with substantially monochromatic pulsed laser light to thereby produce Raman scattered photons. The Raman scattered photons are detected using time-gated detection to thereby obtain a Raman spectroscopic image from the irradiated region characteristic of either a neoplastic portion or a non-neoplastic portion of the region containing the biological tissue. A boundary between a neoplastic portion and a non-neoplastic portion is differentiated and the boundary location in the Raman spectroscopic image is displayed.