摘要:
Electronic device fabrication processes, apparatuses and systems for flowable gap fill or flowable deposition techniques are described. In some implementations, a semiconductor fabrication chamber is described which is configured to maintain a semiconductor wafer at a temperature near 0° C. while maintaining most other components within the fabrication chamber at temperatures on the order of 5-10° C. or higher than the wafer temperature.
摘要:
Electronic device fabrication processes, apparatuses and systems for flowable gap fill or flowable deposition techniques are described. In some implementations, a semiconductor fabrication chamber is described which is configured to maintain a semiconductor wafer at a temperature near 0° C. while maintaining most other components within the fabrication chamber at temperatures on the order of 5-10° C. or higher than the wafer temperature.
摘要:
Apparatuses and techniques for providing for variable radial flow conductance within a semiconductor processing showerhead are provided. In some cases, the radial flow conductance may be varied dynamically during use. In some cases, the radial flow conductance may be fixed but may vary as a function of radial distance from the showerhead centerline. Both single plenum and dual plenum showerheads are discussed.
摘要:
Apparatuses and techniques for providing for variable radial flow conductance within a semiconductor processing showerhead are provided. In some cases, the radial flow conductance may be varied dynamically during use. In some cases, the radial flow conductance may be fixed but may vary as a function of radial distance from the showerhead centerline. Both single plenum and dual plenum showerheads are discussed.
摘要:
A process chamber 55 for processing a semiconductor substrate 60 in a plasma, comprises a process gas distributor 100 for distributing process gas into a plasma zone 65 in the chamber. An inductor antenna 135 is used to form an inductive plasma from the process gas in the plasma zone. A primary bias electrode 145 on a ceiling 140 of the chamber 55 has a conducting surface 150 exposed to the plasma zone 65. A dielectric member 155 comprising a power electrode 165 embedded therein, has a receiving surface for receiving a substrate 60. A secondary bias electrode 170 below the dielectric member 155 has a conducting surface 175 exposed to the plasma zone 65. An electrode voltage supply 180 maintains the power electrode 165, primary bias electrode 145, and secondary bias electrode 170, at different electrical potentials to provide a high density, highly directional, plasma in the plasma zone 65 of the chamber 55.
摘要:
A multi-purpose chamber that can be configured for a variety of processes, including deposition processes and etch processes, for example, by installing one or more removable chamber liners. The multi-purpose chamber provides uniform plasma confinement around a substrate disposed in the chamber for various processing conditions. The multi-purpose chamber also provides efficient and uniform exhaust of processing gas from the chamber.
摘要:
A method and apparatus for use in conjunction with a plasma reaction chamber provide both throttling functionality and independent vacuum isolation for a turbomolecular pump. A throttle valve provides for precise reaction chamber pressure regulation, and a gate valve prevents extended exposure of the turbomolecular pump to atmospheric conditions during cleaning or other maintenance operations. The throttle valve and the gate valve may be actuated independently.
摘要:
The present invention is embodied in a plasma reactor with an inductive coil antenna facing the reactor chamber in which the windings of the coil antenna have a flattened cross-sectional shape, the flat portion of the winding facing toward the plasma within the reactor. Preferably, the coil antenna is located outside the reactor and faces a ceiling or wall of the reactor chamber. The coil antenna may be a single helical coil winding or multiple concentric spiral windings.
摘要:
An apparatus 20 and process for treating and conditioning an etching chamber 30, and cleaning a thin, non-homogeneous, etch residue on the walls 45 and components of the etching chamber 30. In the etching step, a substrate 25 is etched in the etching chamber 30 to deposit a thin etch residue layer on the surfaces of the walls and components in the chamber. In the cleaning step, cleaning gas is introduced into a remote chamber 40 adjacent to the etching chamber 30, and microwave or RF energy is applied inside the remote chamber to form an activated cleaning gas. A short burst of activated cleaning gas at a high flow rate is introduced into the etching chamber 30 to clean the etch residue on the walls 45 and components of the etching chamber. The method is particularly useful for cleaning etch residue that is chemically adhered to ceramic surfaces in the chamber, for example surfaces comprising aluminum nitride, boron carbide, boron nitride, diamond, silicon oxide, silicon carbide, silicon nitride, titanium oxide, titanium carbide, yttrium oxide, zirconium oxide, or mixtures thereof.
摘要:
Hydrogen cleave silicon process for light modulating mirror structure using single crystal silicon as the base cross-member. Existing processes use two critical alignment steps that can contribute to higher actuation voltages and result in lower manufacturing yields. The hydrogen cleave process simplifies the manufacturing process to one step: transferring a thin film of single crystal silicon to the CMOS substrate, resulting in minimal alignment error and providing large bonding area.