摘要:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
摘要:
Briefly, in accordance with one or more embodiments, a base transceiver station such as an Enhanced Node B allocates a first bandwidth for operation with a first set of remote devices which may comprise user equipment (UE), and allocates at least one or more bandwidth segments outside of the first bandwidth for operation with a second set of remote devices which mug comprise user equipment (UE). Remote devices of the first set are capable of operating within the first bandwidth, and remote devices of the second set are capable of operating within the first bandwidth and within the bandwidth segments outside of the first bandwidth. The devices of the first set comprise legacy devices, and devices of the second set comprise advanced devices.
摘要:
Briefly, in accordance with one or more embodiments, a base transceiver station such as an Enhanced Node B allocates a first bandwidth for operation with a first set of remote devices which may comprise user equipment (UE), and allocates at least one or more bandwidth segments outside of the first bandwidth for operation with a second set of remote devices which mag comprise user equipment (UE). Remote devices of the first set are capable of operating within the first bandwidth, and remote devices of the second set are capable of operating within the first bandwidth and within the bandwidth segments outside of the first bandwidth. The devices of the first set comprise legacy devices, and devices of the second set comprise advanced devices.
摘要:
An apparatus and method for providing configuration information relating to an extension carrier within a wireless communications network is disclosed herein. In one embodiment, each enhanced node B (eNodeB) transmits the configuration information within the downlink subframes of at least one radio frame, wherein the configuration information is transmitted on the downlink shared channel (DL-SCH) included in the radio frame. In another embodiment, each eNodeB transmits the configuration information within a radio resource control (RRC) signaling included in at least one radio frame to select ones of the user equipments (UEs) in response to the system load relative to the select UE's request.
摘要:
An apparatus and method for providing configuration information relating to an extension carrier within a wireless communications network is disclosed herein. In one embodiment, each enhanced node B (eNodeB) transmits the configuration information within the downlink subframes of at least one radio frame, wherein the configuration information is transmitted on the downlink shared channel (DL-SCH) included in the radio frame. In another embodiment, each eNodeB transmits the configuration information within a radio resource control (RRC) signaling included in at least one radio frame to select ones of the user equipments (UEs) in response to the system load relative to the select UE's request.
摘要:
An apparatus and method for flexible adjustment of the uplink-downlink ratio configuration for each enhanced node B (eNodeB) within a wireless communications network is disclosed herein. In one embodiment, a given eNodeB is configured to determine a current or subsequent uplink-downlink ratio configuration for a pre-determined time period. The determined current or subsequent uplink-downlink ratio configuration is encoded into a special physical downlink control channel (PDCCH), the special PDCCH included in at least one radio frame according to the pre-determined time period. The radio frame including the special PDCCH is transmitted to user equipment served by the given eNodeB.
摘要:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
摘要:
An apparatus and method for flexible adjustment of the up-link-downlink ratio configuration for each enhanced node B (eNodeB) within a wireless communications network is disclosed herein. In one embodiment, a given eNodeB is configured to determine a current or subsequent up-link-downlink ratio configuration for a pre-determined time period. The determined current or subsequent uplink-downlink ratio configuration is encoded into a special physical downlink control channel (PDCCH), the special PDCCH included in at least one radio frame according to the pre-determined time period. The radio frame including the special PDCCH is transmitted to user equipment served by the given eNodeB.
摘要:
An apparatus may include a receiver arranged to wirelessly receive a downlink message allocating a set of component carriers and non-backward-compatible component carriers. The apparatus may include a processor and a control channel assignment module that is operable on the processor to determine timing for an acknowledgment message for responding to data transmitted in an uplink communication, and to locate a control channel resource for an acknowledgment message to data transmitted via a non-backward-compatible component carrier, the acknowledgement message to be carried by a component carrier. Other embodiments are disclosed and claimed.
摘要:
An apparatus may include a radio frequency (RF) transceiver to receive a first message over a first carrier in a first band in a downlink sub-frame of a first radio frame in a communications link, where the communications link comprises interband carriers aggregated over primary and secondary cells. The apparatus may also include a processor and a reply message assignment module operable on the processor to determine a downlink sub-frame in which the downlink transmission is received and to adjust timing of a reply/acknowledge message to be sent by the RF transceiver in response to the first message so as to coincide with a predetermined uplink sub-frame of a radio frame. Other embodiments are described and claimed.