摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
A field effect transistor includes a body region of a first conductivity type in a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminating within the semiconductor region. A source region of the second conductivity type extends in the body region adjacent the gate trench. The source region and an interface between the body region and the semiconductor region define a channel region therebetween which extends along the gate trench sidewall. A channel enhancement region of the second conductivity type is formed adjacent the gate trench. The channel enhancement region partially extends into a lower portion of the channel region to thereby reduce a resistance of the channel region.
摘要:
A method of forming a field effect transistor includes: forming a trench in a semiconductor region; forming a shield electrode in the trench; performing an angled sidewall implant of impurities of the first conductivity type to form a channel enhancement region adjacent the trench; forming a body region of a second conductivity type in the semiconductor region; and forming a source region of the first conductivity type in the body region, the source region and an interface between the body region and the semiconductor region defining a channel region therebetween, the channel region extending along the trench sidewall. The channel enhancement region partially extends into a lower portion of the channel region to thereby reduce a resistance of the channel region.
摘要:
A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.
摘要:
A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material. The first termination trench can be lined with a layer of dielectric material that is thicker than the dielectric material lining the sidewalls of the active trench, and is substantially filled with conductive material.
摘要:
A method for forming a shielded gate field effect transistor includes the following steps. Trenches extending into a silicon region are formed using a mask that includes a protective layer. A shield dielectric layer lining sidewalls and bottom of each trench is formed. A shield electrode is formed in a bottom portion of each trench. Protective spacers are formed along upper sidewalls of each trench. An inter-electrode dielectric is formed over the shield electrode. The protective spacers and the protective layer of the mask prevent formation of inter-electrode dielectric along the upper sidewalls of each trench and over mesa surfaces adjacent each trench. A gate electrode is formed in each trench over the inter-electrode dielectric.
摘要:
A field effect transistor is formed as follows. Trenches are formed in a semiconductor region of a first conductivity type. Each trench is partially filled with one or more materials. A dual-pass angled implant is carried out to implant dopants of a second conductivity type into the semiconductor region through an upper surface of the semiconductor region and through upper trench sidewalls not covered by the one or more material. A high temperature process is carried out to drive the implanted dopants deeper into the mesa region thereby forming body regions of the second conductivity type between adjacent trenches. Source regions of the first conductivity type are then formed in each body region.