摘要:
Integrated circuits with error detection circuitry are provided. Integrated circuits may include memory cells organized into frames. The error detection circuitry may compress each frame to scan for soft errors. The error detection circuitry may include multiple input shift registers (MISRs), a data register, and a signature comparator. The data frames may be read, compressed, and shifted into the MISRs in parallel. After all the data frames have been read, the MISRs may provide a scanned MISR signature at their outputs. Computer-aided design (CAD) tools may be used to calculate a precomputed MISR signature. The precomputed MISR signature may be loaded into the data register. The signature comparator compares the scanned MISR signature with the precomputed MISR signature. If the signatures match, then the device is free of soft errors. If the signatures do not match, then at least one soft error exists.
摘要:
An integrated circuit (IC) includes a circuit, an encoder, and a decoder. The circuit is coupled to circuitry in the IC via a first set of interconnect fabricated using a metal layer. The encoder encodes a plurality of address lines to provide a plurality of encoded address lines. The decoder decodes the plurality of address lines. The plurality of encoded address lines are routed using a second set of interconnect fabricated using the metal layer.
摘要:
Methods and circuits for zeroization verification of the memory in an integrated circuit (IC) are provided. One method includes sequentially reading frames from a block of the memory, and sequentially performing a logical operation between each of the frames and the content of a signature register. The result of the logical operation is stored back in the signature register. In another operation, a hardware logical comparison is made between a device hardwired signature block and the content of the signature register, after the logical operations for all the frames have been performed. The device hardwired signature block is a hardware implemented constant that is unavailable for loading in registers of the IC. The block of the memory is verified to hold a fixed value when the result of the hardware logical comparison indicates that the device hardwired signature block is equal to the content of the signature register.
摘要:
In mask programmable integrated circuit, such as a structured ASIC, a delay chain provides a delay that is set by a mask programmable switch. The delay chain receives an input to allow the delay mask programmed delay to be overridden using a JTAG controller. This allows testing of different delays. The input may also be provided by a fuse block, so that the fuse block can override the mask programmable switch, thus allowing a delay to be changes after mask programming.
摘要:
Techniques for encoding and decoding fuse data to reduce sense current are disclosed. An embodiment to encode fuse sense data includes inverting each of the bits of the fuse data and using an individual fuse as a flag bit to record the data inversion. The states of the respective fuses may represent different logic states. A fuse may be blown to indicate a logic one and likewise, an unblown fuse may indicate a logic zero. A blown fuse and an unblown fuse may have different current consumption. An unblown fuse may consume more sensing current compared to a blown fuse. Another embodiment to decode the encoded fuse data includes embedded logic circuits and a separate fuse as a flag bit. Encoding and decoding fuse data may reduce fuse sensing current.
摘要:
Techniques for encoding and decoding fuse data to reduce sense current are disclosed. An embodiment to encode fuse sense data includes inverting each of the bits of the fuse data and using an individual fuse as a flag bit to record the data inversion. The states of the respective fuses may represent different logic states. A fuse may be blown to indicate a logic one and likewise, an unblown fuse may indicate a logic zero. A blown fuse and an unblown fuse may have different current consumption. An unblown fuse may consume more sensing current compared to a blown fuse. Another embodiment to decode the encoded fuse data includes embedded logic circuits and a separate fuse as a flag bit. Encoding and decoding fuse data may reduce fuse sensing current.
摘要:
Techniques for encoding and decoding fuse data to reduce sense current are disclosed. An embodiment to encode fuse sense data includes inverting each of the bits of the fuse data and using an individual fuse as a flag bit to record the data inversion. The states of the respective fuses may represent different logic states. A fuse may be blown to indicate a logic one and likewise, an unblown fuse may indicate a logic zero. A blown fuse and an unblown fuse may have different current consumption. An unblown fuse may consume more sensing current compared to a blown fuse. Another embodiment to decode the encoded fuse data includes embedded logic circuits and a separate fuse as a flag bit. Encoding and decoding fuse data may reduce fuse sensing current.
摘要:
In mask programmable integrated circuit, such as a structured ASIC, a delay chain provides a delay that is set by a mask programmable switch. The delay chain receives an input to allow the delay mask programmed delay to be overridden using a JTAG controller. This allows testing of different delays. The input may also be provided by a fuse block, so that the fuse block can override the mask programmable switch, thus allowing a delay to be changes after mask programming.
摘要:
In circuitry such as a programmable logic device (“PLD”), each of several multiplier blocks includes partial products generation circuitry and partial products addition circuitry. Two such multiplier blocks can be used together to provide multiply-accumulate (“MAC”) capability. The partial products addition circuitry in one of the paired blocks is used to add each successive product produced by the other paired block to a previous accumulation of products in the first-mentioned paired block. Provisions are also made for accumulating any overflow from operation of the partial products addition circuitry in the first-mentioned paired block.
摘要:
Integrated circuits (ICs) with configurable test pins and a method of testing an IC are disclosed. An IC has input/output (I/O) pins that can be configured either as a test input pin, a test output pin or a user I/O pin. Selector circuits are used to selectively route and couple the I/O pins to various logic blocks and test circuitry on the IC. Selector circuits are also used to selectively couple either a user output or a test output to different I/O pins on the IC. Switches are used to configure the selector circuits and route test signals within the IC. Different configurations of the switches determine how the signals are routed. Test input signals from an I/O pin may be routed to any test circuitry within the IC and test output signals from a test circuit may be routed to any I/O pin on the IC.