摘要:
A light-emitting diode element includes: an n-type conductive layer 2 being made of a gallium nitride-based compound, a principal surface being an m-plane; a semiconductor multilayer structure 21 provided on a first region 2a of the principal surface of the n-type conductive layer 2, the semiconductor multilayer structure 21 including a p-type conductive layer 4 and an active layer 3; a p-electrode 5 provided on the p-type conductive layer 4; a conductor portion 9 provided on a second region 2b of the principal surface of the n-type conductive layer 2, the conductor portion 9 being in contact with an inner wall of a through hole 8; and an n-type front surface electrode 6 provided on the second region 2b of the principal surface of the n-type conductive layer 2, the n-type front surface electrode 6 being in contact with the conductor portion 9.
摘要:
A light-emitting diode element includes: an n-type conductive layer 2 being made of a gallium nitride-based compound, a principal surface being an m-plane; a semiconductor multilayer structure 21 provided on a first region 2a of the principal surface of the n-type conductive layer 2, the semiconductor multilayer structure 21 including a p-type conductive layer 4 and an active layer 3; a p-electrode 5 provided on the p-type conductive layer 4; a conductor portion 9 provided on a second region 2b of the principal surface of the n-type conductive layer 2, the conductor portion 9 being in contact with an inner wall of a through hole 8; and an n-type front surface electrode 6 provided on the second region 2b of the principal surface of the n-type conductive layer 2, the n-type front surface electrode 6 being in contact with the conductor portion 9.
摘要:
The light-emitting diode element of this invention includes: an n-type GaN substrate (7), of which the principal surface (7a) is an m plane; and a multilayer structure on the principal surface (7a) of the substrate (7), which includes an n-type semiconductor layer (2), an active layer (3) on a first region (2a) of the upper surface of the n-type semiconductor layer (2), a p-type semiconductor layer (4), an anode electrode layer (5), and a cathode electrode layer (6) on a second region (2b) of the upper surface of the n-type semiconductor layer (2). These layers (2, 3, 4) have all been grown epitaxially through an m-plane growth. The n-type dopant concentration in the substrate (7) and n-type semiconductor layer (2) is 1×1018 cm−3 or less. When viewed perpendicularly to the principal surface (7a), a gap of 4 μm or less is left between the anode and cathode electrode layers (5, 6) and the anode electrode layer (5) is arranged at a distance of 45 μm or less from an edge of the cathode electrode layer (6) that faces the anode electrode layer (5).
摘要:
A nitride-based semiconductor light-emitting device 31 includes: an n-type GaN substrate 1 which has an m-plane principal surface; a current diffusing layer 7 provided on the n-type GaN substrate 1; an n-type nitride semiconductor layer 2 provided on the current diffusing layer 7; an active layer 3 provided on the n-type nitride semiconductor layer 2; a p-type nitride semiconductor layer 4 provided on the active layer 3; a p-electrode 5 which is in contact with the p-type nitride semiconductor layer 4; and an n-electrode 6 which is in contact with the n-type GaN substrate 1 or the n-type nitride semiconductor layer 2. The donor impurity concentration of the n-type nitride semiconductor layer 2 is not more than 5×1018 cm−3, and the donor impurity concentration of the current diffusing layer 7 is ten or more times the donor impurity concentration of the n-type nitride semiconductor layer 2.
摘要:
A nitride-based semiconductor light-emitting device of an embodiment includes a semiconductor multilayer structure having a growing plane which is an m-plane and being made of a GaN-based semiconductor. The semiconductor multilayer structure includes a n-type semiconductor layer, a p-type semiconductor layer, a p-side electrode provided on the p-type semiconductor layer, and an active layer interposed between the n-type semiconductor layer and the p-type semiconductor layer. The ratio of the thickness of the active layer to the thickness of the n-type semiconductor layer, D, is in the range of 1.8×10−4≦D≦14.1×10−4. The area of the p-side electrode, S, is in the range of 1×102 μm2≦S≦9×104 μm2. A maximum current density which leads to 88% of a maximum of the external quantum efficiency is not less than 2 A/mm2.
摘要翻译:实施方式的氮化物系半导体发光元件具有半导体层叠结构,该半导体层叠结构具有作为m面的生长面并由GaN系半导体构成。 半导体多层结构包括n型半导体层,p型半导体层,设置在p型半导体层上的p侧电极以及介于n型半导体层和p型半导体层之间的有源层 半导体层。 有源层的厚度与n型半导体层的厚度D之比在1.8×10 -4 @ D @ 14.1×10 -4的范围内。 p侧电极S的面积在1×102mum2 @ S @ 9×104mum2的范围内。 导致外部量子效率最大值的88%的最大电流密度不小于2A / mm2。
摘要:
A nitride-based semiconductor light-emitting device of an embodiment includes a semiconductor multilayer structure having a growing plane which is an m-plane and being made of a GaN-based semiconductor. The semiconductor multilayer structure includes a n-type semiconductor layer, a p-type semiconductor layer, a p-side electrode provided on the p-type semiconductor layer, and an active layer interposed between the n-type semiconductor layer and the p-type semiconductor layer. The ratio of the thickness of the active layer to the thickness of the n-type semiconductor layer, D, is in the range of 1.8×10−4≦D≦14.1×10−4. The area of the p-side electrode, S, is in the range of 1×102 μm2≦S≦9×104 μm2. A maximum current density which leads to 88% of a maximum of the external quantum efficiency is not less than 2 A/mm2.
摘要:
A nitride-based semiconductor light-emitting device 31 includes: an n-type GaN substrate 1 which has an m-plane principal surface; a current diffusing layer 7 provided on the n-type GaN substrate 1; an n-type nitride semiconductor layer 2 provided on the current diffusing layer 7; an active layer 3 provided on the n-type nitride semiconductor layer 2; a p-type nitride semiconductor layer 4 provided on the active layer 3; a p-electrode 5 which is in contact with the p-type nitride semiconductor layer 4; and an n-electrode 6 which is in contact with the n-type GaN substrate 1 or the n-type nitride semiconductor layer 2. The donor impurity concentration of the n-type nitride semiconductor layer 2 is not more than 5×1018 cm−3, and the donor impurity concentration of the current diffusing layer 7 is ten or more times the donor impurity concentration of the n-type nitride semiconductor layer 2.
摘要:
A nitride-based semiconductor device of the present invention includes: a nitride-based semiconductor multilayer structure 20 which includes a p-type semiconductor region with a surface 12 being inclined from the m-plane by an angle of not less than 1° and not more than 5°; and an electrode 30 provided on the p-type semiconductor region. The p-type semiconductor region is formed by an AlxInyGazN (where x+y+z=1, x≧0, y≧0, and z≧0) layer 26. The electrode 30 includes a Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with the surface 12 of the p-type semiconductor region of the semiconductor multilayer structure 20.
摘要翻译:本发明的氮化物系半导体器件包括:氮化物系半导体多层结构体20,其具有p型半导体区域,表面12从m面倾斜不小于1°的角度, 超过5°; 以及设置在p型半导体区域上的电极30。 p型半导体区域由Al x In y Ga z N(其中x + y + z = 1,x≥0,y≥0和z≥0)层26形成。电极30包括Mg层32和Ag层34 设置在Mg层32上.Mg层32与半导体多层结构体20的p型半导体区域的表面12接触。
摘要:
An exemplary nitride-based semiconductor device includes: a nitride-based semiconductor multilayer structure 20 which has a p-type GaN-based semiconductor region whose surface 12 is inclined from the m-plane by an angle of not less than 1° and not more than 5° or the principal surface has a plurality of m-plane steps; and an electrode 30 that is arranged on the p-type GaN-based semiconductor region. The electrode 30 includes a Mg alloy layer 32 which is formed from Mg and metal selected from a group consisting of Pt, Mo, and Pd. The Mg alloy layer 32 is in contact with the surface 12 of the p-type GaN-based semiconductor region of the semiconductor multilayer structure 20.
摘要:
A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes a Zn layer 32 and an Ag layer 34 provided on the Zn layer 32. The Zn layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.