Abstract:
An electromagnetic wakefield detector placed in close proximity to a design trajectory of a non-relativistic charged particle beam produces an optical signal in response to passage of the charged particle beam without interrupting the charged particle beam. A photon detector receives the optical signal and produces a corresponding output. The wakefield detector may be based on the electro optic effect. Specifically, the detector may measure the effect of the charged particle beam a beam of radiation on the phase of radiation travelling parallel to the beam in a nearby electro optic waveguide. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A field emission device comprises one or more emitter elements, each having a high aspect ratio structure with a nanometer scaled cross section; and one or more segmented electrodes, each surrounding one of the one or more emitters. Each of the one or more segmented electrodes has multiple electrode plates. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
An electromagnetic wakefield detector placed in close proximity to a design trajectory of a non-relativistic charged particle beam produces an optical signal in response to passage of the charged particle beam without interrupting the charged particle beam. A photon detector receives the optical signal and produces a corresponding output. The wakefield detector may be based on the electro optic effect. Specifically, the detector may measure the effect of the charged particle beam a beam of radiation on the phase of radiation travelling parallel to the beam in a nearby electro optic waveguide. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A field emission device comprises one or more emitter elements, each having a high aspect ratio structure with a nanometer scaled cross section; and one or more segmented electrodes, each surrounding one of the one or more emitters. Each of the one or more segmented electrodes has multiple electrode plates. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.