摘要:
The semiconductor device includes a fuse structure disposed on a substrate. An interlayer dielectric disposed on the fuse structure. A first contact plug, a second contact plug, and a third contact plug penetrate the interlayer dielectric and wherein each of the first contact plug, the second contact plug and the third contact plug are connected to the fuse structure. A first conductive pattern and a second conductive pattern are disposed on the interlayer dielectric. The first conductive pattern and the second conductive pattern are electrically connected to the first contact plug and second contact plug, respectively.
摘要:
The semiconductor device includes a fuse structure disposed on a substrate. An interlayer dielectric disposed on the fuse structure. A first contact plug, a second contact plug, and a third contact plug penetrate the interlayer dielectric and wherein each of the first contact plug, the second contact plug and the third contact plug are connected to the fuse structure. A first conductive pattern and a second conductive pattern are disposed on the interlayer dielectric. The first conductive pattern and the second conductive pattern are electrically connected to the first contact plug and second contact plug, respectively.
摘要:
In a method of forming an insulation layer pattern, an insulation layer is formed on a substrate. An organic layer and a hard mask layer are successively formed on the insulation layer. A preliminary hard mask pattern having first openings is formed by patterning the hard mask layer. A hard mask pattern having the first openings and second openings is formed by patterning the preliminary hard mask pattern. Width control spacers are formed on sidewalls of the first and the second openings. An etching mask pattern is formed by etching the organic layer using the hard mask pattern as an etching mask. The insulation layer pattern having third openings is formed by etching the insulation layer using the etching mask pattern as an etching mask.
摘要:
In a method of forming an insulation layer pattern, an insulation layer is formed on a substrate. An organic layer and a hard mask layer are successively formed on the insulation layer. A preliminary hard mask pattern having first openings is formed by patterning the hard mask layer. A hard mask pattern having the first openings and second openings is formed by patterning the preliminary hard mask pattern. Width control spacers are formed on sidewalls of the first and the second openings. An etching mask pattern is formed by etching the organic layer using the hard mask pattern as an etching mask. The insulation layer pattern having third openings is formed by etching the insulation layer using the etching mask pattern as an etching mask.
摘要:
Methods for forming an interconnection line and interconnection line structures are disclosed. The method includes forming an interlayer insulating layer on a semiconductor substrate, wherein the interlayer insulating layer is formed of a carbon-doped low-k dielectric layer. An oxidation barrier layer is formed on the interlayer insulating layer. An oxide capping layer is formed on the oxidation barrier layer. A via hole is in the oxide capping layer, the oxidation barrier, and the interlayer insulating layer. A conductive layer pattern is formed within the via hole.
摘要:
In a method of manufacturing a semiconductor device, a first insulation layer on the substrate is patterned to form a first opening having a first width. A lower electrode is formed along an inner contour of the first opening. A second insulation layer on the first insulation layer is patterned to form a second opening that has a second width greater than the first width and is connected to the first opening with a stepped portion. A dielectric layer is formed on the lower electrode in the first opening, a sidewall of the second opening and a first stepped portion between the first insulation layer and the second insulation layer, so that the electrode layer is covered with the dielectric layer. An upper electrode is formed on the dielectric layer. Accordingly, a leakage current between the lower and upper electrodes is suppressed.
摘要:
A method of fabricating a semiconductor device having a low dielectric constant is disclosed. According to the method, a silicon oxycarbide layer is formed, treated with plasma, and patterned. The silicon oxycarbide layer is formed by a coating method or a CVD method such as a PECVD method. Treating the silicon oxycarbide layer with plasma is performed by supplying at least one gas selected from a group of He, H2, N2O, NH3, N2, O2 and Ar. It is desirable that plasma be applied at the silicon oxycarbide layer in a PECVD device by an in situ method after forming the silicon oxycarbide layer. In a case in which a capping layer is further stacked and patterned, it is desirable to treat with H2-plasma. Even in a case in which an interlayer insulation is formed of the silicon oxycarbide layer and a coating layer of an organic polymer group for a dual damascene process, it is desirable to perform the plasma treatment before forming the coating layer.
摘要翻译:公开了一种制造具有低介电常数的半导体器件的方法。 根据该方法,形成碳氧化硅层,用等离子体处理并图案化。 碳硅氧化物层通过涂布法或CVD法如PECVD法形成。 用等离子体处理碳氧化硅层是通过供给至少一种选自He,H 2 H 2,N 2 O,NH 3, N 2,N 2,O 2和Ar。 希望在形成硅碳化硅层之后,通过原位法将等离子体施加在PECVD器件中的碳氧化硅层。 在封盖层进一步堆叠和图案化的情况下,希望用H 2 - 等离子体处理。 即使在由硅碳化硅层和双镶嵌工艺的有机聚合物基团的涂层形成层间绝缘的情况下,期望在形成涂层之前进行等离子体处理。
摘要:
A method of forming a via contact structure using a dual damascene process is disclosed. According to one embodiment a sacrificial layer is formed on an insulating interlayer during the formation of a preliminary via hole. The sacrificial layer has the same composition as a layer filling the preliminary via hole in a subsequent trench formation process. The sacrificial layer and the layer filling the preliminary via hole are simultaneously removed after the trench formation process is carried out. According to another embodiment, a thin capping oxide layer is formed on an insulating interlayer during the formation of a preliminary via hole. The thin capping oxide layer is removed together with a sacrificial layer after a trench formation process is carried out.
摘要:
The present invention discloses a method of fabricating interconnection lines for a semiconductor device. The method includes forming an interlayer insulating layer on a semiconductor substrate. A via hole is formed through the interlayer insulating layer. A via filling material is formed to fill the via hole. A photoresist pattern is formed on the via filling material. The via filling material and the interlayer insulating layer are anisotropically etched using the photoresist pattern as an etch mask to form a trench. A residual portion of the via filling material is removed using two wet etch processes. After removing the residual portion of the via filling material, a conductive layer pattern is formed in the via hole and the trench.
摘要:
A selective copper alloy interconnection in a semiconductor device is provided. The interconnection includes a substrate, a dielectric formed on the substrate, and a first interconnection formed in the dielectric. The first interconnection has a first pure copper pattern. In addition, a second interconnection having a larger width than the first interconnection is formed in the dielectric. The second interconnection has a copper alloy pattern. The copper alloy pattern may be an alloy layer formed of copper (Cu) and an additive material. A method of forming the selective copper alloy pattern is also provided.