Abstract:
In a method of forming an insulation layer pattern, an insulation layer is formed on a substrate. An organic layer and a hard mask layer are successively formed on the insulation layer. A preliminary hard mask pattern having first openings is formed by patterning the hard mask layer. A hard mask pattern having the first openings and second openings is formed by patterning the preliminary hard mask pattern. Width control spacers are formed on sidewalls of the first and the second openings. An etching mask pattern is formed by etching the organic layer using the hard mask pattern as an etching mask. The insulation layer pattern having third openings is formed by etching the insulation layer using the etching mask pattern as an etching mask.
Abstract:
In a method of forming a wiring structure, a first insulation layer is formed on a substrate, the first insulation layer comprising a group of hydrocarbon (CαHβ) wherein α and β are integers. A second insulation layer is formed on the first insulation layer, the second insulation layer being avoid of the group of hydrocarbon. A first opening is formed through the first and the second insulation layers by etching the first and the second insulation layers. A damaged pattern and a first insulation layer pattern are formed by performing a surface treatment on a portion of the first insulation layer corresponding to an inner sidewall of the first opening. A sacrificial spacer is formed in the first opening on the damaged pattern and on the second insulation layer. A conductive pattern is formed in the first opening. The sacrificial spacer and the damaged pattern are removed to form a first air gap between the conductive pattern and the first insulation layer pattern, and to form a second air gap between the conductive pattern and the second insulation layer.
Abstract:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
Abstract:
In a method of forming an insulation layer pattern, an insulation layer is formed on a substrate. An organic layer and a hard mask layer are successively formed on the insulation layer. A preliminary hard mask pattern having first openings is formed by patterning the hard mask layer. A hard mask pattern having the first openings and second openings is formed by patterning the preliminary hard mask pattern. Width control spacers are formed on sidewalls of the first and the second openings. An etching mask pattern is formed by etching the organic layer using the hard mask pattern as an etching mask. The insulation layer pattern having third openings is formed by etching the insulation layer using the etching mask pattern as an etching mask.
Abstract:
An actuator using a piezoelectric element and a method of driving the same. The actuator includes at least one piezoelectric cell moving by displacement according to an input voltage, at least one piezoelectric sensor sensing the displacement of the at least one piezoelectric cell, an error detector detecting an error in the at least one piezoelectric sensor, and a feedback signal generator generating a feedback signal corresponding to the error, thereby performing micromirror driving and sensing.
Abstract:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
Abstract:
A semiconductor wafer having multi-layer metallization structures that are fabricated to include embedded interconnection structures which serve as low-resistance electroplating current paths to conduct bulk electroplating current fed to portions of a metallic seed layer at peripheral surface regions of the wafer to portions of the metallic seed layer at inner/central surface regions of the semiconductor wafer to achieve uniformity in metal plating in chip regions across the wafer.
Abstract:
Methods of forming CMOS integrated circuit devices include forming at least first, second and third transistors in a semiconductor substrate and then covering the transistors with one or more electrically insulating layers that impart a net stress (tensile or compressive) to channel regions of the transistors. The covering step may include covering the first and second transistors with a first electrically insulating layer having a sufficiently high internal stress characteristic to impart a net tensile (or compressive) stress in a channel region of the first transistor and covering the second and third transistors with a second electrically insulating layer having a sufficiently high internal stress characteristic to impart a net compressive (or tensile) stress in a channel region of the third transistor. A step may then performed to selectively remove a first portion of the second electrically insulating layer extending opposite a gate electrode of the second transistor. In addition, a step may be performed to selectively remove a first portion of the first electrically insulating layer extending opposite a gate electrode of the first transistor and a second portion of the second electrically insulating layer extending opposite a gate electrode of the third transistor.
Abstract:
Semiconductor fabrication methods to forma of via contacts in DSL (dual stress liner) semiconductor devices are provided, in which improved etching process flows are implemented to enable etching of via contact openings through overlapped and non-overlapped regions of the dual stress liner structure to expose underlying salicided contacts and other device contacts, while mitigating or eliminating defect mechanisms such as over etching of contact regions underlying non-overlapped regions of the DSL.
Abstract:
An image sensor device and method for forming the same include a photodiode formed in a substrate, at least one electrical interconnection line electrically associated with the photodiode, a light passageway having a light inlet, the light passageway being positioned in alignment with the photodiode, a color filter positioned over the light inlet of the light passageway and a lens positioned over the color filter in alignment with the light passageway wherein the at least one electrical interconnection line includes a copper interconnection formation having a plurality of interlayer dielectric layers in a stacked configuration with a diffusion barrier layer between adjacent interlayer dielectric layers, and a barrier metal layer between the copper interconnection formation and the plurality of interlayer dielectric layers and intervening diffusion barrier layers. An image sensor device may employ copper interconnections if a barrier metal layer is removed from above a photodiode.