Abstract:
A system with a ferroelectric memory has a low probability of soft error thereby decreasing the possibility of serious damage to the system that might result from soft errors. The ferroelectric memory is provided with an overwrite-inhibited memory block 122 for storing this OS (Operating System) and applications, and an overwrite-free memory block 123 which is a work area. The overwrite-inhibited memory block 122 includes a parity bit storage 125. A process for checking and correcting error performed about one a day. A command for starting the error checking and correcting procedures is triggered by a switch such as power source switch. When an error occurs in the ferroelectric memory 120, it is possible to recover the function of the system.
Abstract:
A system with a ferroelectric memory has a low probability of soft error thereby decreasing the possibility of serious damage to the system that might result from soft errors. The ferroelectric memory is provided with an overwrite-inhibited memory block 122 for storing the OS (Operating System) and applications, and an overwrite-free memory block 123 which is a work area. The overwrite-inhibited memory block 122 includes a parity bit storage 125. A process for checking and correcting error performed about once a day. A command for starting the error checking and correcting procedures is triggered by a switch such as power source switch. When an error occurs in the ferroelectric memory 120, it is possible to recover the function of the system.
Abstract:
A low dielectric constant, a low dielectric loss tangent, and heat resistance are achieved. An active ester resin that has a resin structure produced by reacting a polyfunctional phenolic compound (a1) with a monofunctional aromatic carboxylic acid or its chloride (a2) and an aromatic dicarboxylic acid or its chloride (a3). The polyfunctional phenolic compound (a1) is represented by structural formula (1) below: (where Ar represents a benzene ring, a naphthalene ring, a benzene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, X represents a methylene group, a divalent cyclic aliphatic hydrocarbon group, a phenylene dimethylene group, or a biphenylene-dimethylene group, and n represents the number of repeating units and the average thereof is in a range of 0.5 to 10).
Abstract:
A manufacturing technique is disclosed for producing a semiconductor integrated circuit device having plural layers of buried wirings, and such that there is prevented the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
Abstract:
In an input circuit for semiconductor devices, such as an address buffer, an arrangement is provided which obviates the timing margin from capture of an input signal to its latching and outputting, thereby increasing the operation speed of the input circuit. The address buffer includes a differential amplifier Ai which receives an input signal Ai and outputs a pair of differential signals A-come-first-served latch circuit detects, latches and outputs one of the paired differential signals that has changed first. Activation/inactivation of the differential amplifier is done by turning on and off an N-channel MOS transistor through a Set signal. When activated, the differential amplifier generates a potential difference between the paired differential signals and, when inactivated, has its paired differential signals go low.
Abstract:
A low dielectric constant, a low dielectric loss tangent, and heat resistance are achieved. An active ester resin that has a resin structure produced by reacting a polyfunctional phenolic compound (a1) with a monofunctional aromatic carboxylic acid or its chloride (a2) and an aromatic dicarboxylic acid or its chloride (a3). The polyfunctional phenolic compound (a1) is represented by structural formula (1) below: (where Ar represents a benzene ring, a naphthalene ring, a benzene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, X represents a methylene group, a divalent cyclic aliphatic hydrocarbon group, a phenylene dimethylene group, or a biphenylene-dimethylene group, and n represents the number of repeating units and the average thereof is in a range of 0.5 to 10).
Abstract:
A manufacturing technique is disclosed for producing a semiconductor integrated circuit device having plural layers of buried wirings, and such that there is prevented the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
Abstract:
In a semiconductor integrated circuit device having plural layers of buried wirings, it is intended to prevent the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
Abstract:
A field-effect semiconductor element implemented with a fewer number of elements and a reduced area and capable of storing data by itself without need for cooling at a cryogenic temperature, and a memory device employing the same. Gate-channel capacitance is set so small that whether or not a trap captures one electron or hole can definitely and distinctively be detected in terms of changes of a current of the semiconductor FET element. By detecting a change in a threshold voltage of the semiconductor element brought about by trapping of electron or hole in the trap, data storage can be realized at a room temperature.
Abstract:
A field-effect semiconductor element implemented with a fewer number of elements and a reduced area and capable of storing data by itself without need for cooling at a cryogenic temperature, and a memory device employing the same. Gate-channel capacitance is set so small that whether or not a trap captures one electron or hole can definitely and distinctively be detected in terms of changes of a current of the semiconductor FET element. By detecting a change in a threshold voltage of the semiconductor element brought about by trapping of electron or hole in the trap, data storage can be realized at a room temperature.