摘要:
Methods of processing a substrate in a PVD chamber comprising a target, a substrate and a process gas at a pressure sufficient to cause ionization of a substantial portion of species sputtered from the target are described. A capacitively coupled high density plasma is maintained by applying very high frequency power to the target. Sputtered material is ionized in the plasma and accelerated toward the substrate by a high frequency bias power applied to the substrate. The microstructure of the resultant film is controlled by modifying one or more of the pressure and the high frequency bias power.
摘要:
Methods of processing a substrate in a PVD chamber comprising a target, a substrate and a process gas at a pressure sufficient to cause ionization of a substantial portion of species sputtered from the target are described. A capacitively coupled high density plasma is maintained by applying very high frequency power to the target. Sputtered material is ionized in the plasma and accelerated toward the substrate by a high frequency bias power applied to the substrate. The microstructure of the resultant film is controlled by modifying one or more of the pressure and the high frequency bias power.
摘要:
Methods of depositing metal in high aspect ratio features are provided herein. In some embodiments, a method of processing a substrate includes applying RF power at VHF frequency to a target comprising metal disposed in the PVD chamber above the substrate to form a plasma from a plasma-forming gas, sputtering metal atoms from the target using the plasma while maintaining a first pressure in the PVD chamber sufficient to ionize a predominant portion of the sputtered metal atoms, depositing the ionized metal atoms on a bottom surface of the opening and on a first surface of the substrate, applying a first RF power to redistribute at least some of the deposited metal atoms from the bottom surface and upper surface to sidewalls of the opening, and repeating the deposition the redistribution processes until a first layer of metal is deposited on substantially all surfaces of the opening.
摘要:
Methods for depositing metal in high aspect ratio features formed on a substrate are provided herein. In some embodiments, a method includes applying first RF power at VHF frequency to target comprising metal disposed above substrate to form plasma, applying DC power to target to direct plasma towards target, sputtering metal atoms from target using plasma while maintaining pressure in PVD chamber sufficient to ionize predominant portion of metal atoms, depositing first plurality of metal atoms on bottom surface of opening and on first surface of substrate, applying second RF power to redistribute at least some of first plurality from bottom surface to lower portion of sidewalls of the opening, and depositing second plurality of metal atoms on upper portion of sidewalls by reducing amount of ionized metal atoms in PVD chamber, wherein first and second pluralities form a first layer deposited on substantially all surfaces of opening.
摘要:
Methods for depositing metal in high aspect ratio features formed on a substrate are provided herein. In some embodiments, a method includes applying first RF power at VHF frequency to target comprising metal disposed above substrate to form plasma, applying DC power to target to direct plasma towards target, sputtering metal atoms from target using plasma while maintaining pressure in PVD chamber sufficient to ionize predominant portion of metal atoms, depositing first plurality of metal atoms on bottom surface of opening and on first surface of substrate, applying second RF power to redistribute at least some of first plurality from bottom surface to lower portion of sidewalls of the opening, and depositing second plurality of metal atoms on upper portion of sidewalls by reducing amount of ionized metal atoms in PVD chamber, wherein first and second pluralities form a first layer deposited on substantially all surfaces of opening.
摘要:
In some embodiments, substrate processing apparatus may include a chamber body; a lid disposed atop the chamber body; a target assembly coupled to the lid, the target assembly including a target of material to be deposited on a substrate; an annular dark space shield having an inner wall disposed about an outer edge of the target; a seal ring disposed adjacent to an outer edge of the dark space shield; and a support member coupled to the lid proximate an outer end of the support member and extending radially inward such that the support member supports the seal ring and the annular dark space shield, wherein the support member provides sufficient compression when coupled to the lid such that a seal is formed between the support member and the seal ring and the seal ring and the target assembly.
摘要:
Apparatus for processing substrates are provided herein. In some embodiments, an apparatus includes a process kit comprising a shield having one or more sidewalls configured to surround a first volume, the first volume disposed within an inner volume of a process chamber; and a first ring moveable between a first position, wherein the first ring rests on the shield, and a second position, wherein a gap is formed between an outer surface of the first ring and an inner surface of the one or more sidewalls, wherein a width of the gap is less than about two plasma sheath widths for a plasma formed at a frequency of about 40 MHz or higher and at a pressure of about 140 mTorr or lower.
摘要:
A processing system may include a target having a central axis normal thereto; a source distribution plate having a target facing side opposing a backside of the target, wherein the source distribution plate includes a plurality of first features such that a first distance of a first radial RF distribution path along a given first diameter is about equal to a second distance of an opposing second radial RF distribution path along the given first diameter; and a ground plate opposing a target opposing side of the source distribution plate and having a plurality of second features disposed about the central axis and corresponding to the plurality of first features, wherein a third distance of a first radial RF return path along a given second diameter is about equal to a fourth distance of an opposing second radial RF return path along the given second diameter.
摘要:
Methods for forming a metal containing layer onto a substrate with good deposition profile control and film uniformity across the substrate are provided. In one embodiment, a method of sputter depositing a metal containing layer on the substrate includes transferring a substrate in a processing chamber, supplying a gas mixture including at least Ne gas into the processing chamber, applying a RF power to form a plasma from the gas mixture, and depositing a metal containing layer onto the substrate in the presence of the plasma.
摘要:
Embodiments of the present invention provide improved methods and apparatus for physical vapor deposition (PVD) processing of substrates. In some embodiments, an apparatus for physical vapor deposition (PVD) may include a target assembly having a target comprising a source material to be deposited on a substrate, an opposing source distribution plate disposed opposite a backside of the target and electrically coupled to the target along a peripheral edge of the target, and a cavity disposed between the backside of the target and the source distribution plate; an electrode coupled to the source distribution plate at a point coincident with a central axis of the target; and a magnetron assembly comprising a rotatable magnet disposed within the cavity and having an axis of rotation that is aligned with a central axis of the target assembly, wherein the magnetron assembly is not driven through the electrode.