摘要:
Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
摘要:
Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
摘要:
Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
摘要:
Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
摘要:
Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
摘要:
An RF coil for a plasma etch chamber is provided in which the RF coil is substantially flat over a portion of at least one turn of the coil. In one embodiment, each turn of the coil is substantially flat over a majority of each turn. In one embodiment of the present inventions, each turn of the coil is substantially flat over approximately 300 degrees of the turn. In the final approximate 60 degrees of the turn, the coil is sloped down to the next turn. Each turn thus comprises a substantially flat portion in combination with a sloped portion interconnecting the turn to the next adjacent turn. In one embodiment, the RF coil having turns with substantially flat portions is generally cylindrical. Other shapes are contemplated such as a dome shape. In some applications such as an RF plasma etch reactor, it is believed that providing an RF coil having turns comprising flat portions with sloped portions interconnecting the flat portions can improve uniformity of the etch process.
摘要:
Embodiments of the invention described herein generally provide methods and apparatuses for forming cobalt silicide layers, metallic cobalt layers, and other cobalt-containing materials. In one embodiment, a method for forming a cobalt silicide containing material on a substrate is provided which includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, depositing a metallic cobalt material on the cobalt silicide material, and depositing a metallic contact material on the substrate. In another embodiment, a method includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, expose the substrate to an annealing process, depositing a barrier material on the cobalt silicide material, and depositing a metallic contact material on the barrier material.
摘要:
Embodiments of the invention described herein generally provide methods for forming cobalt silicide layers and metallic cobalt layers by using various deposition processes and annealing processes. In one embodiment, a method for forming a metallic silicide containing material on a substrate is provided which includes forming a metallic silicide material over a silicon-containing surface during a vapor deposition process by sequentially depositing a plurality of metallic silicide layers and silyl layers on the substrate, depositing a metallic capping layer over the metallic silicide material, heating the substrate during an annealing process, and depositing a metallic contact material over the barrier material. In one example, the metallic silicide layers and the metallic capping layer both contain cobalt. The cobalt silicide material may contain a silicon/cobalt atomic ratio of about 1.9 or greater, such as greater than about 2.0, or about 2.2 or greater.
摘要:
An epitaxial deposition process including a dry etch process, followed by an epitaxial deposition process is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is introduced into a plasma cavity, and the gas mixture is energized to form a plasma of reactive gas in the plasma cavity. The reactive gas enters into the processing chamber and reacts with the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose an epitaxy surface. The epitaxy surface is substantially free of oxides. Epitaxial deposition is then used to form an epitaxial layer on the epitaxy surface.
摘要:
Embodiments of the invention generally provide methods for forming cobalt silicide. In one embodiment, a method for forming a cobalt silicide material includes exposing a substrate having a silicon-containing material to either a wet etch solution or a pre-clean plasma during a first step and then to a hydrogen plasma during a second step of a pre-clean process. The method further includes depositing a cobalt metal layer on the silicon-containing material by a CVD process, heating the substrate to form a first cobalt silicide layer comprising CoSi at the interface of the cobalt metal layer and the silicon-containing material during a first annealing process, removing any unreacted cobalt metal from the substrate during an etch process, and heating the substrate to form a second cobalt silicide layer comprising CoSi2 during a second annealing process.