摘要:
A substrate transfer apparatus comprising: a plurality of floating-transfer guide plates adjacent to each other with a space therebetween, each of the guide plates having a substrate-placing surface on which a substrate is to be placed, and a plurality of floating-gas ejecting holes for floating the substrate with use of a gas; a gas supplying source for supplying the floating gas to the respective guide plates; and an arm for transferring the floated substrate from the guide plate, from which the substrate is to be transferred, to the adjacent guide plate to which the substrate is to be transferred, wherein the substrate-placing surface of the guide plate to which the substrate is to be transferred is situated lower than the substrate-placing surface of the guide plate from which the substrate is to be transferred.
摘要:
A substrate transfer apparatus comprising: a plurality of floating-transfer guide plates adjacent to each other with a space, each of guide plate having a plurality of floating gas ejecting holes; a gas supplying source for supplying a floating gas to the guide plates; a tray that is placed on one of the guide plates in order to mount a substrate to be transferred, and that is floated by the floating gas; and a transfer arm for transferring the floated tray to the adjacent other guide plate from the guide plate, wherein the tray includes a main body portion having both side edges parallel to a transfer direction of the tray, and an outward projecting portion that is formed so as to partially project outwardly from at least one of both side edges of the main body portion, and wherein the transfer arm is in contact and engaged with the outward projecting portion when the tray is transferred by the transfer arm.
摘要:
A substrate transfer apparatus comprising: a plurality of floating-transfer guide plates adjacent to each other with a space therebetween, each of the guide plates having a substrate-placing surface on which a substrate is to be placed, and a plurality of floating-gas ejecting holes for floating the substrate with use of a gas; a gas supplying source for supplying the floating gas to the respective guide plates; and an arm for transferring the floated substrate from the guide plate, from which the substrate is to be transferred, to the adjacent guide plate to which the substrate is to be transferred, wherein the substrate-placing surface of the guide plate to which the substrate is to be transferred is situated lower than the substrate-placing surface of the guide plate from which the substrate is to be transferred.
摘要:
A substrate transfer apparatus comprising: a plurality of floating-transfer guide plates adjacent to each other, each of guide plates having a plurality of floating gas ejecting holes; a gas supplying source; a tray to mount a substrate to be transferred, and that is floated by the floating gas; and a transfer arm for transferring the floated tray from the guide plate to the adjacent other guide plate, wherein the tray includes both side edges, and a contact/engagement portion formed at the respective both side edges for the transfer arm, each of the transfer arms including a base portion that can horizontally reciprocate along a rail provided so as to be parallel to the transfer direction, a guide portion provided to the base portion, that can horizontally reciprocate in a direction orthogonal to the transfer direction, and an arm portion provided to the guide portion, that can horizontally reciprocate in the direction parallel to the transfer direction.
摘要:
A vacuum chamber has an opening. A door is to close the opening. A first rail extends in a first direction with a space between the first rail and the opening when viewed in a planar view. Further, the first rail supports the door to be movable in the first direction. Further, the first rail has a portion facing the opening in a second direction crossing the first direction when viewed in a planar view. Furthermore, the first rail has a first movable portion movable in the second direction.
摘要:
A vacuum processing device includes a first processing chamber for housing a workpiece and performing vacuum processing on the workpiece, an evacuatable second processing chamber for housing a workpiece to be vacuum-processed and a workpiece having been vacuum-processed, a gate unit provided between the first and second processing chambers so that the gate unit is attachable to and detachable from the first processing chamber, a transport device for loading the workpiece to be vacuum-processed from a loading unit to a vacuum processing unit through the gate unit, and unloading the workpiece having been vacuum-processed from the vacuum processing unit to an unloading unit through the gate unit, and a movement mechanism for separating the first and second processing chambers from each other.
摘要:
A plasma processing apparatus, comprising: a reaction chamber; a plurality of discharge portions each made up of a pair of a first electrode and a second electrode disposed inside the reaction chamber so as to oppose to each other and to cause a plasma discharge under an atmosphere of a reactant gas; and a dummy electrode, wherein a plurality of the first electrodes are connected to a power supply portion, a plurality of the second electrodes are grounded, and the dummy electrode is disposed so as to oppose to an outer surface side of an external first electrode in terms of a parallel direction out of the plurality of the first electrodes which are disposed in the parallel direction, and is grounded.
摘要:
In a chamber of a plasma processing apparatus, a cathode electrode and an anode electrode are disposed at a distance from each other. The cathode electrode is supplied with electric power from an electric power supply portion. The anode electrode is electrically grounded and a substrate is placed thereon. The anode electrode contains a heater. In an upper wall portion of the chamber, an exhaust port is provided and connected to a vacuum pump through an exhaust pipe. In a lower wall portion of a wall surface of the chamber, a gas introduction port is provided. A gas supply portion is provided outside the chamber.
摘要:
Provided are a semiconductor layer manufacturing method and a semiconductor manufacturing apparatus capable of forming a high quality semiconductor layer even by a single chamber system, with a shortened process time required for reducing a concentration of impurities that exist in a reaction chamber before forming the semiconductor layer. A semiconductor device manufactured using such a method and apparatus is also provided. The present invention relates to a semiconductor layer manufacturing method of forming a semiconductor layer inside a reaction chamber (101) capable of being hermetically sealed, including an impurities removing step of removing impurities inside the reaction chamber (101) using a replacement gas, and a semiconductor layer forming step of forming the semiconductor layer, the impurities removing step being a step in which a cycle composed of a replacement gas introducing step of introducing the replacement gas into the reaction chamber (101) and an exhausting step of exhausting the replacement gas is repeated a plurality of times, the impurities removing step being performed at least before the semiconductor layer forming step.
摘要:
An excellent silicon-based thin-film photoelectric conversion device is manufactured simply and efficiently at a low cost. Specifically, a method of manufacturing the silicon-based thin-film photoelectric conversion device including a p-type semiconductor layer, an i-type microcrystalline silicon-based photoelectric conversion layer and an n-type semiconductor layer deposited by plasma CVD includes the steps of: successively depositing the p-type semiconductor layer, the i-type microcrystalline silicon-based photoelectric conversion layer and the n-type semiconductor layer on a substrate within the same plasma CVD film deposition chamber; transferring the substrate out of the film deposition chamber; and subsequently to the step of depositing the p-type semiconductor layer, the i-type microcrystalline silicon-based photoelectric conversion layer and the n-type semiconductor layer, eliminating influences of remaining n-type impurities on a cathode and/or within the film deposition chamber.