摘要:
A charge and discharge circuit and a battery pack, both capable of voluntarily perform proper switching between a charge operation and a discharge operation of a secondary battery according to various situations, are provided. The charge and discharge circuit of a secondary battery is one capable of charging the secondary battery E2 by a power source voltage and of supplying power from the secondary battery E2 to an external device 3. Then, the charge and discharge circuit includes a bidirectional regulator 10 capable of adjusting an output in both of a charge direction of feeding the current to the side of the secondary battery E2 and a discharge direction of feeding the current from the secondary battery E2 to the side of the external device 3, a charge and discharge detecting circuit 20 for detecting a direction of the current flowing in the secondary battery E2, and a switching control circuit 30 for switching the operation direction of the bidirectional regulator 10 based on the detection of the charge and discharge detecting circuit 20.
摘要:
A charge and discharge circuit and a battery pack, both capable of voluntarily perform proper switching between a charge operation and a discharge operation of a secondary battery according to various situations, are provided. The charge and discharge circuit of a secondary battery is one capable of charging the secondary battery E2 by a power source voltage and of supplying power from the secondary battery E2 to an external device 3. Then, the charge and discharge circuit includes a bidirectional regulator 10 capable of adjusting an output in both of a charge direction of feeding the current to the side of the secondary battery E2 and a discharge direction of feeing the current from the secondary battery E2 to the side of the external device 3, a charge and discharge detecting circuit 20 for detecting a direction of the current flowing in the secondary battery E2, and a switching control circuit 30 for switching the operation direction of the bidirectional regulator 10 based on the detection of the charge and discharge detecting circuit 20.
摘要:
Provided is a bidirectional converter which has flexibility to be applicable in various conditions and performs stable switching of operation mode at high efficiency. An electronic device which supplies power in various conditions and operates with excellent efficiency is also provided. An electronic device is provided with a bidirectional converter, which has a reactor and four switches between power supply input terminals and a secondary battery, and a system circuit is supplied with an operation voltage through the bidirectional converter. A status signal indicating the operation status of the system circuit is transmitted to a microcomputer of the bidirectional converter, and based on the status signal, switching of operation mode of the bidirectional converter is controlled.
摘要:
Provided is a bidirectional converter which has flexibility to be applicable in various conditions and performs stable switching of operation mode at high efficiency. An electronic device which supplies power in various conditions and operates with excellent efficiency is also provided. An electronic device is provided with a bidirectional converter, which has a reactor and four switches between power supply input terminals and a secondary battery, and a system circuit is supplied with an operation voltage through the bidirectional converter. A status signal indicating the operation status of the system circuit is transmitted to a microcomputer of the bidirectional converter, and based on the status signal, switching of operation mode of the bidirectional converter is controlled.
摘要:
The present invention provides a highly safe charging circuit with which overcharge of a secondary battery will never occur even when a failure occurs in a transistor or the like that controls the charging voltage or charging current or when a protection circuit does not operate normally. In a secondary battery charging circuit 4 that charges a secondary battery E2 with an input power source voltage, the power source voltage is set to a voltage (e.g. 4.0 V) that is lower than the full-charge voltage (e.g. 4.2 V) of the secondary battery. When the voltage of the secondary battery E2 is lower than the power source voltage, a constant current circuit operates to perform constant current charging without voltage step-up, and when the voltage of the secondary battery E2 is higher than the power source voltage and lower than the full-charge voltage, a voltage step-up circuit operates to perform constant current charging with voltage step-up.
摘要:
The present invention provides a method for coating an inner surface of a polyvinyl chloride medical tube containing a plasticizer with an antithrombogenic material composed of a specific (meth)acrylate copolymer. The simple method of the present invention is capable of evenly and efficiently coating an inner surface of a polyvinyl chloride medical tube with a sufficient amount of an antithrombogenic material without causing appearance deterioration or uneven coating due to elution of the plasticizer. The method is performed by passing through a tube a solution that is prepared by dissolving an antithrombogenic material in a solvent composed of water and at least one alcohol that is adjusted to dissolve the copolymer of the antithrombogenic material but does not dissolve the plasticizer, then subsequently passing water through the tube, and finally drying the tube.
摘要:
According to one embodiment, there is provided a printed-wiring board with a component in which an electronic component is mounted on a pattern-forming surface of a base material. In the printed-wiring board, a guiding path for guiding, to the outside, a void formed in mounting the electronic component is formed on the pattern-forming surface.
摘要:
To provide a method for the manufacture of a nerve regeneration-inducing tube being excellent in pressure resistance, shape recovery property, anti-kink property, film exfoliation resistance, property of prevention of invasion of outer tissues and leakage resistance.The present invention is a method for the manufacture of a nerve regeneration-inducting tube in which the outer surface of the tubular body knitted with a plurality of ultrafine fibers comprising biodegradable polymer is coated by application of a collagen solution for plural times to coat and then collagen is filled in the inner area of the above tubular body, characterized in that, viscosity of the collagen solution which is firstly applied on the outer surface of the tubular body is made 2 cps to 800 cps or, preferably, 5 cps to 200 cps.Preferably, viscosity of a collagen solution to be applied later is made high as compared with that of the firstly-applied one.
摘要:
According to one embodiment, there is provided a printed-wiring board with a built-in component including a first base material including a pattern forming surface on which a plurality of conductive patterns are formed. A circuit component is mounted on the pattern forming surface of the first base material, and is connected to the conductive patterns of the first base material. A filling material is stacked on the pattern forming surface of the first base material, and fills in a gap between the circuit component and the pattern forming surface. A second base material is stacked on the pattern forming surface of the first base material by interposing the filling material between the pattern forming surface and the second base material.
摘要:
According to one embodiment, a printed circuit board includes a first dielectric layer, a circuit component mounted on the first dielectric layer, and a second dielectric layer. The first dielectric layer is provided with a via hole which opens at a surface thereof and in which a conductive layer is provided, and a conductive pattern connected electrically to the conductive layer of the via hole. The circuit component is provided with a bump at least a part of which is inserted in the via hole and bonded to an inner surface of the via hole. The second dielectric layer is formed provided with another conductive pattern and laminated to the first dielectric layer to cover the circuit component.