摘要:
A plasma treatment apparatus and a plasma treatment method having the capability of uniformly treating an object with plasma at a high treatment speed. This apparatus includes a tubular vessel having a laterally elongated cross section, a pair of electrodes arranged such that electric flux lines develop substantially in an axial direction of the tubular vessel when one of an AC voltage and a pulse voltage is applied between the electrodes, a gas supply for supplying a streamer generation gas into the tubular vessel, a power source for applying the voltage between the electrodes to generate plural streamers of the gas in the tubular vessel, and a plasma uniformity mechanism for making the plural streamers uniform in a lateral direction of the laterally elongated cross section of the tubular vessel to provide the plasma from one end of the tubular vessel.
摘要:
A plasma treatment apparatus can generate atmospheric pressure plasma with reliability by help of an ignition electrode to facilitate starting the apparatus without using an expensive impedance matching device. The apparatus comprises a plasma-generation chamber having an aperture from which the plasma blows out, a gas supply unit for supplying a gas for plasma generation into the chamber, a pair of electrodes, a power source for applying an AC electric field between the electrodes to maintain the plasma in the chamber, a pulse generator for providing a pulse voltage, and the ignition electrode for applying the pulse voltage to the gas supplied in the chamber to generate the plasma.
摘要:
A plasma treatment apparatus is provided, which enables to increase a treatment area and provide good treatment uniformity. This apparatus comprises a pair of electrode plates having a plurality of through holes and an insulating plate having a plurality of through holes. The insulating plate is disposed between the electrode plates such that positions of the through holes of the electrode plates correspond to the positions of the through holes of the insulating plate. A plurality of discharge spaces are formed by the through holes of the electrode plates and the through holes of the insulating plate. By applying a voltage between the electrode plates, while supplying a plasma generation gas into the discharge spaces, plasmas are generated simultaneously in the discharge spaces, and sprayed on an object to efficiently perform a large-area, uniform plasma treatment.
摘要:
A plasma treatment apparatus is provided, which enables to increase a treatment area and provide good treatment uniformity. This apparatus comprises a pair of electrode plates having a plurality of through holes and an insulating plate having a plurality of through holes. The insulating plate is disposed between the electrode plates such that positions of the through holes of the electrode plates correspond to the positions of the through holes of the insulating plate. A plurality of discharge spaces are formed by the through holes of the electrode plates and the through holes of the insulating plate. By applying a voltage between the electrode plates, while supplying a plasma generation gas into the discharge spaces, plasmas are generated simultaneously in the discharge spaces, and sprayed on an object to efficiently perform a large-area, uniform plasma treatment.
摘要:
A plasma processing apparatus for performing plasma processing of an article, comprising: a central electrode; a tubular outer electrode which is provided so as to surround the central electrode; a tubular reaction pipe which is disposed between the central electrode and the outer electrode so as to electrically insulate the central electrode and the outer electrode from each other; a gas supply device for supplying a plasma producing gas to a discharge space defined between the central electrode and the outer electrode in the reaction pipe; an AC power source for applying an AC voltage between the central electrode and the outer electrode; wherein not only the plasma producing gas is supplied to the discharge space by the gas supply device but the AC voltage is applied between the central electrode and the outer electrode by the AC power source so as to generate a glow discharge in the discharge space under atmospheric pressure such that a plasma jet is blown to the article from a blow-off outlet of the reaction pipe; and a cooling device for cooling the central electrode and the outer electrode.
摘要:
A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).
摘要:
A wavelength conversion particle 7 used for a wavelength conversion member 70 is provided with a moth-eye structure section 74 having a fine concavo-convex structure in the side of a surface of a fluorescent particle 71, and the fine concavo-convex structure is formed in fluorescent particle 71 itself. Wavelength conversion member 70 is formed by dispersing wave-length conversion particle(s) 7 into a translucent medium 73 having a smaller refraction index than fluorescent particle 71 of wavelength conver-sion particle 7. Wavelength conversion member 70 is further provided with an antireflection section 76 in the side of the surface of fluorescent particle 71. Antireflection section 76 comprises moth-eye structure section 74 and translucent medium 73 entered between taper-shaped fine projections 75 of moth-eye structure section 74. In a light emitting device 1, wavelength conversion member 70 is used as a color conversion member converting a part of light emitted from a LED chip 10 into light having a longer wave-length than the light emitted from LED chip 10 and emitting the converted light.
摘要:
A wavelength conversion particle 7 used for a wavelength conversion member 70 is provided with a moth-eye structure section 74 having a fine concavo-convex structure in the side of a surface of a fluorescent particle 71, and the fine concavo-convex structure is formed in fluorescent particle 71 itself. Wavelength conversion member 70 is formed by dispersing wave-length conversion particle(s) 7 into a translucent medium 73 having a smaller refraction index than fluorescent particle 71 of wavelength conver-sion particle 7. Wavelength conversion member 70 is further provided with an antireflection section 76 in the side of the surface of fluorescent particle 71. Antireflection section 76 comprises moth-eye structure section 74 and translucent medium 73 entered between taper-shaped fine projections 75 of moth-eye structure section 74. In a light emitting device 1, wavelength conversion member 70 is used as a color conversion member converting a part of light emitted from a LED chip 10 into light having a longer wave-length than the light emitted from LED chip 10 and emitting the converted light.
摘要:
A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).
摘要:
A zirconia based composite material with improved strength and toughness includes a partially stabilized zirconia including 1.5 to 4.5 mol % of yttrium oxide as a matrix thereof and a metal phase of at least one metal selected from the group consisting of titanium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten as metal grains dispersed in the matrix. The metal phase has a melting point higher than a sintering temperature of the partially stabilized zirconia. In addition, it is preferred that the composite material further contains a ceramic phase of at least one ceramic selected from the group consisting of Al.sub.2 O.sub.3, SiC, Si.sub.3 N.sub.4, B.sub.4 C, carbides, nitrides and borides of titanium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten as ceramic grains dispersed in the matrix. The composite material of the present invention is manufactured by the following steps. A mixture is prepared by incorporating at least one first constituent forming the partially stabilized zirconia with at least one second constituent forming the metal phase, and if necessary, at least one third constituent forming the ceramic phase. The mixture is sintered in a non-oxidation atmosphere to obtain the composite material.