摘要:
A semiconductor device in which an IGBT region and a diode region are formed on one semiconductor substrate is disclosed. The IGBT region includes: a body layer of a first conductivity type that is formed on a front surface of the semiconductor substrate; a body contact layer of the first conductivity type that is partially formed on a front surface of the body layer and has a higher impurity concentration of the first conductivity type than the body layer; an emitter layer of a second conductivity type that is partially formed on the front surface of the body layer; a drift layer; a collector layer; and a gate electrode. In the semiconductor device, a part of the body contact layer placed at a long distance from the diode region is made larger than a part of the body contact layer placed at a short distance from the diode region.
摘要:
When a semiconductor substrate of a semiconductor device is viewed from above, an isolation region, an IGBT region, and a diode region are all formed adjacent to each other. A deep region that is connected to a body region and an anode region is formed in the isolation region. A drift region is formed extending across the isolation region, the IGBT region, and the diode region, inside the semiconductor substrate. A collector region that extends across the isolation region, the IGBT region and the diode region, and a cathode region positioned in the diode region, are formed in a region exposed on a lower surface of the semiconductor substrate. A boundary between the collector region and the cathode region is in the diode region, in a cross-section that cuts across a boundary between the isolation region and the diode region, and divides the isolation region and the diode region. The collector region formed in the isolation region has a higher dopant impurity concentration than the collector region in the IGBT region.
摘要:
When a semiconductor substrate of a semiconductor device is viewed from above, an isolation region, an IGBT region, and a diode region are all formed adjacent to each other. A deep region that is connected to a body region and an anode region is formed in the isolation region. A drift region is formed extending across the isolation region, the IGBT region, and the diode region, inside the semiconductor substrate. A collector region that extends across the isolation region, the IGBT region and the diode region, and a cathode region positioned in the diode region, are formed in a region exposed on a lower surface of the semiconductor substrate. A boundary between the collector region and the cathode region is in the diode region, in a cross-section that cuts across a boundary between the isolation region and the diode region, and divides the isolation region and the diode region. The collector region formed in the isolation region has a higher dopant impurity concentration than the collector region in the IGBT region.
摘要:
When a semiconductor substrate of a semiconductor device is viewed from above, an isolation region, an IGBT region, and a diode region are all formed adjacent to each other. A deep region that is connected to a body region and an anode region is formed in the isolation region. A drift region is formed extending across the isolation region, the IGBT region, and the diode region, inside the semiconductor substrate. A collector region that extends across the isolation region, the IGBT region and the diode region, and a cathode region positioned in the diode region, are formed in a region exposed on a lower surface of the semiconductor substrate. A boundary between the collector region and the cathode region is in the diode region, in a cross-section that cuts across a boundary between the isolation region and the diode region, and divides the isolation region and the diode region. The collector region formed in the isolation region has a higher dopant impurity concentration than the collector region in the IGBT region.
摘要:
A semiconductor device includes a main IGBT region in which an IGBT is provided, a main diode region in which a diode is provided, a sense IGBT region in which an IGBT is provided, and a sense diode region in which a diode is provided. A clearance between the body region and the anode region is longer than a product of electron mobility and electron lifetime in the n-type region between the body region and the anode region. A clearance between an end of the collector region on a sense diode region side and the body region is longer than a product of electron mobility and electron lifetime in the n-type region between the end and the body region.
摘要:
The present application discloses a semiconductor device in which an IGBT region and a diode region are formed on one semiconductor substrate. The IGBT region includes: a collector layer; an IGBT drift layer; a body layer; a gate electrode; and an emitter layer. The diode region includes: a cathode layer; a diode drift layer; an anode layer; a trench electrode; and an anode contact layer. The diode region is divided into unit diode regions by the gate electrode or the trench electrode. In a unit diode region adjacent to the IGBT region, when seen in a plan view of the front surface of the semiconductor substrate, the anode layer and the anode contact layer are mixedly placed, and the anode contact layer is placed at least in a location opposite to the emitter layer with the gate electrode interposed therebetween.
摘要:
The present application discloses a semiconductor device in which an IGBT region and a diode region are formed on one semiconductor substrate. The IGBT region includes: a collector layer; an IGBT drift layer; a body layer; a gate electrode; and an emitter layer. The diode region includes: a cathode layer; a diode drift layer; an anode layer; a trench electrode; and an anode contact layer. The diode region is divided into unit diode regions by the gate electrode or the trench electrode. In a unit diode region adjacent to the IGBT region, when seen in a plan view of the front surface of the semiconductor substrate, the anode layer and the anode contact layer are mixedly placed, and the anode contact layer is placed at least in a location opposite to the emitter layer with the gate electrode interposed therebetween.
摘要:
A semiconductor device in which an element region including at least an IGBT region is formed on a semiconductor substrate is presented. The IGBT region including: a collector layer; a drift layer; a body layer; a gate electrode placed inside a trench extending from the front surface of the semiconductor substrate to the drift layer; an emitter layer; and a contact layer having a higher impurity concentration than the body layer. In the semiconductor device, assuming that an x direction is a direction in which the trench extends along the front surface of the semiconductor substrate and that a y direction is a direction orthogonal to the x direction along the front surface of the semiconductor substrate, a distance from the contact layer to the emitter layer in the x direction is larger than a distance from the contact layer to the trench in the y direction.
摘要:
An image reading apparatus includes a lower unit, an upper unit arranged above the lower unit and a guide arranged on an opposite side to the lower unit with respect to the upper unit. The guide relatively rotates with respect to the upper unit in a direction away from the upper unit so as to form an ejection path, between the upper unit and the guide, of a sheet-like medium conveyed between the upper unit and the lower unit. The upper unit and the guide are close to each other respectively, at positions closest to the lower unit in respective rotation ranges of relative rotation with respect to the lower unit. The rotation range of the guide is wider than that of the upper unit, in a rotation direction away from the lower unit from the positions close to each other.
摘要:
A vehicle includes a battery as a power storage device that can be charged and discharged, a booster unit, an inverter, and a motor generator operating as a vehicle driving unit receiving electric power supply from the battery to drive the vehicle, a coupling unit coupling the vehicle with an external power supply for charging the battery from the outside of the vehicle, and a control device performing control related to the battery. The control device determines whether or not a destination is a charging-available place where the battery can be charged from the outside of the vehicle, and if the destination is a charging-available place, performs control related to the battery so that the temperature of the battery is a charging-efficient temperature on arrival at the destination.