摘要:
Provided is a vertical external cavity surface emitting laser (VECSEL) including: a bottom DBR mirror formed on a substrate; an RPG layer formed on the bottom DBR layer; a capping layer formed on the RPG mirror; an optical pump irradiating a pump beam onto a surface of the capping layer; and an external cavity mirror installed on an external surface of a stacked layer corresponding to the bottom DBR mirror. The RPG layer includes: a plurality of first barrier layers periodically formed on nodes of a standing wave and formed of a material having a larger energy band gap width than that of the pump beam; and a plurality of gain layers including a plurality of QW layers formed of InGaAs and disposed between the first barrier layers, and a plurality of second barrier layers disposed on upper and lower portions of the QW layers.
摘要:
Provided is a vertical external cavity surface emitting laser (VECSEL) including: a bottom DBR mirror formed on a substrate; an RPG layer formed on the bottom DBR layer; a capping layer formed on the RPG mirror; an optical pump irradiating a pump beam onto a surface of the capping layer; and an external cavity mirror installed on an external surface of a stacked layer corresponding to the bottom DBR mirror. The RPG layer includes: a plurality of first barrier layers periodically formed on nodes of a standing wave and formed of a material having a larger energy band gap width than that of the pump beam; and a plurality of gain layers including a plurality of QW layers formed of InGaAs and disposed between the first barrier layers, and a plurality of second barrier layers disposed on upper and lower portions of the QW layers.
摘要:
Provided are a biochip platform for biochemically analyzing a sample such as DNA or protein, including a dielectric particle layer, and an optical assay apparatus including the same. The biochip platform includes the dielectric particle layer uniformly formed on a substrate. The particle uniformity of the dielectric particle layer enables good wavelength separation of fluorescence signal, and the large surface area of the dielectric particle layer guarantees better amplification efficiency of fluorescence signal. Furthermore, the biochip platform shows good economical efficiency due to easy fabrication process, and is particularly useful in an optical assay apparatus for analyzing a biochemical sample due to good assay efficiency.
摘要:
A GaN series surface-emitting laser diode and a method for manufacturing the same are provided. The GaN series surface-emitting laser diode includes: an active layer; p-type and n-type material layers on the opposite sides of the active layer; a first-distributed Bragg reflector (DBR) layer formed on the n-type material layer; an n-type electrode connected to the active layer through the n-type material layer such that voltage is applied to the active layer for lasing; a spacer formed on the p-type material layer with a laser output window in a portion aligned with the first DBR layer, the spacer being thick enough to enable holes to effectively migrate to a center portion of the active layer; a second DBR layer formed on the laser output window; and a p-type electrode connected to the active layer through the p-type material layer such that voltage is applied to the active layer for lasing. The laser output window is shaped such that diffraction of a laser beam caused by the formation of the spacer can be compensated for.
摘要:
Provided is a vertical cavity surface emitting laser (VCSEL) including a feedback member which feeds a portion of light externally emitted from a resonator for generating and amplifying a laser beam, back into the resonator by reflecting the same and acts as a concave mirror for the resonator. The VCSEL operates predominantly in the single fundamental transverse mode, emitting a laser output having a peak intensity at its center. The VCSEL can be manufactured by a simple process and provides excellent reproducibility.
摘要:
A nitride-based semiconductor light emitting device having an improved structure in which light extraction efficiency is improved and a method of manufacturing the same are provided. The nitride-based semiconductor light emitting device comprises an n-clad layer, an active layer, and a p-clad layer, which are sequentially stacked on a substrate, wherein the n-clad layer comprises a first clad layer, a second clad layer, and a light extraction layer interposed between the first clad layer and the second clad layer and composed of an array of a plurality of nano-posts, the light extraction layer diffracting or/and scattering light generated in the active layer.
摘要:
A GaN series surface-emitting laser diode and a method for manufacturing the same are provided. The GaN series surface-emitting laser diode includes: an active layer; p-type and n-type material layers on the opposite sides of the active layer; a first-distributed Bragg reflector (DBR) layer formed on the n-type material layer; an n-type electrode connected to the active layer through the n-type material layer such that voltage is applied to the active layer for lasing; a spacer formed on the p-type material layer with a laser output window in a portion aligned with the first DBR layer, the spacer being thick enough to enable holes to effectively migrate to a center portion of the active layer; a second DBR layer formed on the laser output window; and a p-type electrode connected to the active layer through the p-type material layer such that voltage is applied to the active layer for lasing. The laser output window is shaped such that diffraction of a laser beam caused by the formation of the spacer can be compensated for.
摘要:
A semiconductor light emitting device having a multiple pattern structure greatly increases light extraction efficiency. The semiconductor light emitting device includes a substrate and a semiconductor layer, an active layer, and an electrode layer formed on the substrate, a first pattern defining a first corrugated structure between the substrate and the semiconductor layer, and a second pattern defining a second corrugated structure on the first corrugated structure of the first pattern.
摘要:
Provided are a biochip platform for biochemically analyzing a sample such as DNA or protein, including a dielectric particle layer, and an optical assay apparatus including the same. The biochip platform includes the dielectric particle layer uniformly formed on a substrate. The particle uniformity of the dielectric particle layer enables good wavelength separation of fluorescence signal, and the large surface area of the dielectric particle layer guarantees better amplifications efficiency of fluorescence signal. Furthermore, the biochip platform shows good economical efficiency due to easy fabrication process, and is particularly useful in an optical assay apparatus for analyzing a biochemical sample due to good assay efficiency.
摘要:
A nitride-based semiconductor light emitting device having an improved structure in which light extraction efficiency is improved and a method of manufacturing the same are provided. The nitride-based semiconductor light emitting device comprises an n-clad layer, an active layer, and a p-clad layer, which are sequentially stacked on a substrate, wherein the n-clad layer comprises a first clad layer, a second clad layer, and a light extraction layer interposed between the first clad layer and the second clad layer and composed of an array of a plurality of nano-posts, the light extraction layer diffracting or/and scattering light generated in the active layer.