摘要:
The invention relates to a mask inspection method that can be used for the design and production of masks, in order to detect relevant weak points early on and to correct the same. According to said method for mask inspection, an aerial image simulation, preferably an all-over aerial image simulation, is carried out on the basis of the mask design converted into a mask layout, in order to determine a list of hot spots. The mask/test mask is analysed by means of an AIMS tool, whereby real aerial images are produced and compared with the simulated aerial images. The determined differences between the aerial images are used to improve the mask design. The inventive arrangement enables a method to be carried out for mask inspection for mask design and mask production. The use of the AIMS tool directly in the mask production process essentially accelerates the mask production, while reducing the error rate and cost.
摘要:
The invention relates to a mask inspection method that can be used for the design and production of masks, in order to detect relevant weak points early on and to correct the same. According to said method for mask inspection, an aerial image simulation, preferably an all-over aerial image simulation, is carried out on the basis of the mask design converted into a mask layout, in order to determine a list of hot spots. The mask/test mask is analysed by means of an AIMS tool, whereby real aerial images are produced and compared with the simulated aerial images. The determined differences between the aerial images are used to improve the mask design. The inventive arrangement enables a method to be carried out for mask inspection for mask design and mask production. The use of the AIMS tool directly in the mask production process essentially accelerates the mask production, while reducing the error rate and cost.
摘要:
An arrangement making use of two-dimensional arrays consisting of individually controllable elements, for forming aperture diaphragms in the beam paths of optical devices. In an arrangement of diaphragm apertures and/or filters, in which the form, position and/or optical characteristics can be changed, for use in optical devices, at least one two-dimensional array, consisting of individually controllable elements, is arranged for forming the diaphragm apertures and/or filters in the optical imaging and/or illumination beam paths and is connected with a control unit for controlling the individual elements In this way, the geometry, the optical characteristics and/or the position of the aperture diaphragms and/or the filters can be controlled very quickly. These changes can also be made “online” during the process of measurement or adjustment in the sense of optical fine tuning. Furthermore, using these systems, the elaborate and time consuming preparation of the diaphragm apertures with geometric forms can be omitted.
摘要:
There is provided a reflective X-ray microscope for examining an object in an object plane. The reflective X-ray microscope includes (a) a first subsystem, having a first mirror and a second mirror, disposed in a beam path from the object plane to the image plane, and (b) a second subsystem, having a third mirror, situated downstream of the first subsystem in the beam path. The object is illuminated with radiation having a wavelength
摘要:
An arrangement and a method for the production of photomasks in which at least one defect control system is connected to at least one repair system by a stationary data connection or online connection, and the defect control system and repair system are connected to one another by data in such a way that the results obtained on one of the systems are immediately available to the other system for further processing. The defect control system conveys detected defects to the repair system via a data connection for data exchange. An AIMS system is advantageously provided as defect control system and an electron beam system is advantageously provided for defect control.
摘要:
There is provided a reflective X-ray microscope for examining an object in an object plane. The reflective X-ray microscope includes (a) a first subsystem, having a first mirror and a second mirror, disposed in a beam path from the object plane to the image plane, and (b) a second subsystem, having a third mirror, situated downstream of the first subsystem in the beam path. The object is illuminated with radiation having a wavelength
摘要:
A method and apparatus for the repair of photolithography masks, wherein a photolithography mask is examined for the presence of defects and a list of the defects is generated, in which at least one type of defect, its extent, and its location on the photolithography mask is assigned to each defect, and these defects are repaired.
摘要:
A method and apparatus for the repair of photolithography masks, wherein a photolithography mask is examined for the presence of defects and a list of the defects is generated, in which at least one type of defect, its extent, and its location on the photolithography mask is assigned to each defect, and these defects are repaired.
摘要:
Apparatus for inspecting objects especially masks in microlithography that are disposed in a vacuum chamber. The apparatus includes a converter for converting illuminating radiation emitted from the object into a radiation of a higher wavelength. A sensor for recording images is disposed outside the vacuum chamber and arranged as an optical interface from the vacuum chamber to the sensor of the converter or at least one part of an image lens is arranged as a window in the vacuum chamber.
摘要:
A method for measuring the relative local position error of one of the sections of an object that is exposed section by section, in particular of a lithography mask or of a wafer, is provided, each exposed section having a plurality of measurement marks, wherein a) a region of the object which is larger than the one section is imaged in magnified fashion and is detected as an image, b) position errors of the measurement marks contained in the detected image are determined on the basis of the detected image, c) corrected position errors are derived by position error components which are caused by the magnified imaging and detection being extracted from the determined position errors of the measurement marks, d) the relative local position error of the one section is derived on the basis of the corrected position errors of the measurement marks.